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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Scalar Line Integral as a limit of a Riemann sum

Let x : [a, b]→ R3 be a path of class C 1

Let f : X ⊆ R3 → R be a continuous function

Suppose that domain X contains the image of x, so that the
composite f (x(t)) is defined

As with every other integral, the scalar line integral is a limit
of appropriate Riemann sums

Consider a partition of [a, b]

a = t0 < t1 < · · · < tk < · · · < tn = b
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Scalar Line Integral as a limit of a Riemann sum

a = t0 < t1 < · · · < tk < · · · < tn = b

Let us think of

The image of the path x as representing an idealized wire in
space
f (x(t)) as the electrical charge density of the wire

Then, the Riemann sum approximates the total charge of the
wire

Total charge = ĺım
all ∆tk→0

n∑
k=1

f (x(t∗k ))∆sk
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Definition 1.1: Scalar Line Integral

The scalar line integral of f along the C 1 path x is∫ b

a
f (x(t))‖x′(t)‖dt

We denote this integral ∫
x
f ds

Remarks

The line integral represents a sum of values of f along x,
times “infinitesimal” pieces of arclength of x
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Remarks

Definition 1.1 can be made for arbitrary n, that is, for
functions f defined on domains in Rn for arbitrary n

Remarks

We can still define the scalar line integral if

x is not of class C 1, but only “piecewise” C 1

f (x(t)) is only piecewise continuous
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Example 1

Let f (x , y , z) = xy + z and x : [0, 2π]→ R3 be the helix

x(t) = (cos t, sin t, t)

We compute∫
x
f ds =

∫ 2π

0
f (x(t))‖x′(t)‖dt

First, from the double-angle formula

f (x(t)) = cos t sin t + t =
1

2
sin 2t + t

x′(t) = (− sin t, cos t, 1)

‖x′(t)‖ =
√

sin2 t + cos2 t + 1 =
√

2
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Example 1
f (x , y , z) = xy + z and x(t) = (cos t, sin t, t)

f (x(t)) = cos t sin t + t =
1

2
sin 2t + t

x′(t) = (− sin t, cos t, 1), ‖x′(t)‖ =
√

sin2 t + cos2 t + 1 =
√

2

Thus∫
x
f ds =

∫ 2π

0
f (x(t))‖x′(t)‖dt =

∫ 2π

0

(
1

2
sin 2t + t

)√
2 dt

=
√

2

∫ 2π

0

(
1

2
sin 2t + t

)
dt =

√
2

(
−1

4
cos 2t +

1

2
t2

)∣∣∣∣2π
0

=
√

2

((
−1

4
+ 2π2

)
−
(
−1

4
+ 0

))
= 2
√

2π2
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Example 2

Let f (x , y) = y − x and let x : [0, 3]→ R2 be the planar path

x(t) =

{
(2t, t) if 0 ≤ t ≤ 1

(t + 1, 5− 4t) if 1 < t ≤ 3

Hence, x is piecewise C 1 path

The two path segments defined for t in [0, 1] and for t in
[1, 3] are each of class C 1
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Example 2

Let f (x , y) = y − x and let x : [0, 3]→ R2 be the planar path

x(t) =

{
(2t, t) if 0 ≤ t ≤ 1

(t + 1, 5− 4t) if 1 < t ≤ 3

Thus ∫
x
f ds =

∫
x1

f ds +

∫
x2

f ds
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Example 2

Let f (x , y) = y − x and let x : [0, 3]→ R2 be the planar path

x(t) =

{
(2t, t) if 0 ≤ t ≤ 1

(t + 1, 5− 4t) if 1 < t ≤ 3

Thus ∫
x
f ds =

∫
x1

f ds +

∫
x2

f ds

where

x1(t) = (2t, t) for 0 ≤ t ≤ 1
x2(t) = (t + 1, 5− 4t) for 1 < t ≤ 3

It is easy to see that

‖x1
′(t)‖ =

√
5 and ‖x2

′(t)‖ =
√

17
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Example 2

Let f (x , y) = y − x and let x : [0, 3]→ R2 be the planar path

x(t) =

{
(2t, t) if 0 ≤ t ≤ 1

(t + 1, 5− 4t) if 1 < t ≤ 3

‖x1
′(t)‖ =

√
5 and ‖x2

′(t)‖ =
√

17

Thus∫
x1

f ds =

∫ 1

0

f (x1(t))‖x1
′(t)‖dt =

∫ 1

0

(t − 2t) ·
√

5 dt =−
√

5

2
t2

∣∣∣∣∣
1

0

=−
√

5

2∫
x2

f ds =

∫ 3

1

f (x2(t))‖x2
′(t)‖dt =

∫ 3

1

((5− 4t)− (t + 1)) ·
√

17dt

=
√

17

(
4t − 5

2
t2

)∣∣∣∣3
1

= − 12
√

17
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Scalar and Vector Line Integrals Green’s Theorem

Scalar line integral

Geometric Interpretation of Scalar Line Integrals

Let f (x , y) = 2 + x2y and let x : [0, π]→ R2 be the planar
path

x(t) = (cos t, sin t), 0 ≤ t ≤ π
Then

f (x(t)) = f (x(t), y(t)) = 2 + cos2 t sin t

The line integral of f along x is the area of the “fence“ whose

Path is governed by x
Height is governed by f
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Scalar and Vector Line Integrals Green’s Theorem

Vector line integral

Definition 1.2

Let x : [a, b]→ Rn be a path of class C 1

Let F : X ⊆ Rn → Rn be a vector field

Suppose that X contains the image of x and assume that F
varies continuously along x

The vector line integral of F along x : [a, b]→ Rn, is∫
x

F · ds =

∫ b

a
F(x(t)) · x′(t)dt

Remarks

As with scalar line integrals, we may define the vector line
integrals when x is a piecewise C 1 path

We juste need to break up the integral in a suitable manner
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Scalar and Vector Line Integrals Green’s Theorem

Vector line integral

Example 3

Let F be the radial vector field on R3 given by

F = x i + y j + zk

Let x : [0, 1]→ R3 be the path

x(t) = (t, 3t2, 2t3)

Then

x′(t) = (1, 6t, 6t2)∫
x

F · ds =

∫ b

a

F(x(t)) · x′(t)dt

=

∫ 1

0

(
ti + 3t2j + 2t3k

)
·
(
i + 6tj + 6t2k

)
dt

=

∫ 1

0

(
t + 18t3 + 12t5

)
dt =

(
1

2
t2 +

9

2
t4 + 2t6

)∣∣∣∣1
0

= 7
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Scalar and Vector Line Integrals Green’s Theorem

Vector line integral

Physical Interpretation of Vector Line Integrals

Consider F to be a force field in space

Then, the vector line integral could represent the work done
by F on a particle as the particle moves along the path x

Total Work =

∫ b

a
F(x(t)) · x′(t)dt =

∫
x

F · ds

Simplified example

Suppose F is a constant vector field and x is a straight-line
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Scalar and Vector Line Integrals Green’s Theorem

Vector line integral

Physical Interpretation of Vector Line Integrals

Consider F to be a force field in space

Then, the vector line integral could represent the work done
by F on a particle as the particle moves along the path x

Total Work =

∫ b

a
F(x(t)) · x′(t)dt =

∫
x

F · ds

Simplified example

Suppose F is a constant vector field and x is a straight-line

Then, the work done by F in moving a particle from one point
A along x to another point B is given by

Work = F ·∆s = F · (B − A)
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Scalar and Vector Line Integrals Green’s Theorem

Vector line integral

Differential Geometry Interpretation

Suppose x : [a, b]→ Rn is a C 1 path with x′(t) 6= 0 for
a ≤ t ≤ b

Recall that we define the unit tangent vector T to x by
normalizing the velocity

T =
x′(t)

‖x′(t)‖

Then∫
x

F · ds =

∫ b

a
F(x(t)) · x′(t)dt

=

∫ b

a
(F(x(t)) · T(t)) ‖x′(t)‖dt =

∫
x

(F · T) ds
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Scalar and Vector Line Integrals Green’s Theorem

Vector line integral

Differential Geometry Interpretation

Suppose x : [a, b]→ Rn is a C 1 path with x′(t) 6= 0 for
a ≤ t ≤ b

Then ∫
x

F · ds = =

∫
x

(F · T) ds

Since the dot product F · T is a scalar quantity, we have
written the original vector line integral as a scalar line integral

It represents the (scalar) line integral of the tangential
component of F along the path
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Scalar and Vector Line Integrals Green’s Theorem

Vector line integral

Differential Geometry Interpretation

Suppose x : [a, b]→ Rn is a C 1 path with x′(t) 6= 0 for
a ≤ t ≤ b

Then ∫
x

F · ds =

∫
x

(F · T) ds
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Scalar and Vector Line Integrals Green’s Theorem

Vector line integral

Example 4

The circle x2 + y2 = 9 may be parametrized by{
x = 3 cos t

y = 3 sin t
, 0 ≤ t ≤ 2π

Hence, a unit tangent vector is

T =
−3 sin ti + 3 cos tj√

9 sin2 t + 9 cos2 t
= − sin ti + cos tj =

−y i + x j

3

Now consider the radial vector field F = x i + y j on R2

At every point along the circle we have

F · T = (x i + y j) ·
(
−y i + x j

3

)
= 0
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Scalar and Vector Line Integrals Green’s Theorem

Vector line integral

Example 4{
x = 3 cos t

y = 3 sin t
, 0 ≤ t ≤ 2π,T =

−y i + x j

3
and F = x i + y j⇒ F · T = 0

Thus, F is always perpendicular to the curve, and∫
x

F · ds =

∫
x

(F · T) ds =

∫
x

0 ds = 0

Considering F as a force,
no work is done
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Scalar and Vector Line Integrals Green’s Theorem

Differential form of the line integral

Outline

1 Scalar and Vector Line Integrals
Scalar line integral
Vector line integral
Differential form of the line integral
Effect of reparametrization
Closed and simples curves

2 Green’s Theorem
Definition
Examples

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 25 / 70



Scalar and Vector Line Integrals Green’s Theorem

Differential form of the line integral

Differential Form of the Line Integral

Suppose that x(t) = (x(t), y(t), z(t)), a ≤ t ≤ b, is a C 1 path

Consider a continuous vector field F written as

F(x , y , z) = M(x , y , z)i + N(x , y , z)j + P(x , y , z)k

Then, from Definition 1.2 of the vector line integral, we have∫
x

F · ds =

∫ b

a

(M(x , y , z)i + N(x , y , z)j + P(x , y , z)k)

· (x ′(t)i + y ′(t)j + z ′(t)k) dt

=

∫ b

a

(M(x , y , z)x ′(t) + N(x , y , z)y ′(t) + P(x , y , z)z ′(t)) dt

Recall that dx = x ′(t)dt, dy = y ′(t)dt, dz = z ′(t)dt

=

∫
x

M(x , y , z)dx + N(x , y , z)dy + P(x , y , z)dz

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 26 / 70



Scalar and Vector Line Integrals Green’s Theorem

Differential form of the line integral

Differential Form of the Line Integral

Suppose that x(t) = (x(t), y(t), z(t)), a ≤ t ≤ b, is a C 1 path

Consider a continuous vector field F written as

F(x , y , z) = M(x , y , z)i + N(x , y , z)j + P(x , y , z)k

Then, from Definition 1.2 of the vector line integral, we have∫
x

F · ds =

∫
x

M(x , y , z)dx + N(x , y , z)dy + P(x , y , z)dz

A notational alternative is∫
x

F · ds =

∫
x

M dx + N dy + P dz

The differential form
of the line integral
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Scalar and Vector Line Integrals Green’s Theorem

Differential form of the line integral

Differential Form of the Line Integral

Suppose that x(t) = (x(t), y(t), z(t)), a ≤ t ≤ b, is a C 1 path

Consider a continuous vector field F written as

F(x , y , z) = M(x , y , z)i + N(x , y , z)j + P(x , y , z)k

Then, from Definition 1.2 of the vector line integral, we have∫
x

F · ds =

∫
x

M(x , y , z)dx + N(x , y , z)dy + P(x , y , z)dz

A alternative notation is∫
x

F · ds =

∫
x

M dx + N dy + P dz

M dx + N dy + P dz is itself called a differential form

M dx + N dy + P dz should be evaluated using the
parametric equations for x , y , and z
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Scalar and Vector Line Integrals Green’s Theorem

Differential form of the line integral

Example 5

Let x be the path x(t) = (t, t2, t3) for 0 ≤ t ≤ 1

We compute∫
x

(y + z) dx + (x + z) dy + (x + y) dz

Along the path, we have

x = t ⇒ dx = dt, y = t2 ⇒ dy = 2tdt, z = t3 ⇒ dz = 3t2dt

Therefore∫
x
(y + z) dx + (x + z) dy + (x + y) dz

=

∫ 1

0
(t2 + t3)dt + (t + t3)2tdt + (t + t2)3t2dt

=

∫ 1

0

(
5t4 + 4t3 + 3t2

)
dt =

(
t5 + t4 + t3

)∣∣1
0

= 3
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

The Effect of Reparametrization

The unit tangent vector to a path depends on the geometry of
the underlying curve

It doesn’t depend on
the particular parametrization

We might expect the line integral likewise to depend only on
the image curve

For example, consider the following two paths in the plane

x : [0, 2π]→ R2, x(t) = (cos t, sin t)

y : [0, π]→ R2, y(t) = (cos 2t, sin 2t)

Both x and y trace out a circle once in a counterclockwise
sense

If we let u(t) = 2t, then we see that y(t) = x(u(t))
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Definition 1.3

Let x : [a, b]→ Rn be a piecewise C 1 path

Consider another C 1 path y : [c , d ]→ Rn

We say that y is a reparametrization of x if there is a one-one
and onto function u : [c , d ]→ [a, b] of class C 1

With inverse u−1 : [a, b]→ [c , d ] that is also of class C 1

Such that y(t) = x(u(t)), that is, y = x ◦ u

Remark

Thus, any reparametrization of a path must have the same
underlying image curve as the original path
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Example 6

Consider the path

x(t) = (1 + 2t, 2− t, 3 + 5t), 0 ≤ t ≤ 1

It traces the line segment from the point (1, 2, 3) to the point
(3, 1, 8)

1. So does the path

y(t) = (1 + 2t2, 2− t2, 3 + 5t2), 0 ≤ t ≤ 1

We have that y is a reparametrization of x via the change of
variable

u(t) = t2
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Example 6

Consider the path

x(t) = (1 + 2t, 2− t, 3 + 5t), 0 ≤ t ≤ 1

It traces the line segment from the point (1, 2, 3) to the point
(3, 1, 8)

2. We consider now the path z : [−1, 1]→ R3

z(t) = (1 + 2t2, 2− t2, 3 + 5t2), − 1 ≤ t ≤ 1

It is not a reparametrization of x

We also have z(t) = x(u(t)), where u(t) = t2

But in this case u maps [−1, 1] onto [0, 1] in a way that is not
one-one
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Example 6

Consider the path

x(t) = (1 + 2t, 2− t, 3 + 5t), 0 ≤ t ≤ 1

It traces the line segment from the point (1, 2, 3) to the point
(3, 1, 8)

3. We finally consider the path w : [0, 1]→ R3

w(t) = (3− 2t, 1 + t, 8− 5t), 0 ≤ t ≤ 1

It is a reparametrization of x

We have w(t) = x(1− t)

So the function u : [0, 1]→ [0, 1] given by u(t) = 1− t
provides the change of variable for the reparametrization.

Geometrically, w traces the line segment
between (1, 2, 3) and (3, 1, 8) in the opposite direction to x
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Reparametrization and Orientation

Let y : [c , d ]→ Rn be a reparametrization of x : [a, b]→ Rn

via the change of variable u : [c , d ]→ [a, b]

Then, since u is one-one, onto, and continuous, we must have
either

1. u(c) = a and u(d) = b, or
2. u(c) = b and u(d) = a

In case 1, we say that y (or u) is orientation-preserving

y traces out the same image curve
in the same direction that x does

In case 2, we say that y (or u) is orientation-reversing

y traces out the same image curve
in the opposite direction that x does
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Example 7

Let x : [a, b]→ Rn be any C 1 path

Then, we may define the opposite path xopp : [a, b]→ Rn by

xopp(t) = x(a + b − t)

That is, xopp(t) = x(u(t)), where u : [a, b]→ [a, b] is given by

u(t) = a + b − t

Clearly, then, xopp(t) is an orientation-reversing
reparametrization of x
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Reparametrization and Velocity

In addition to reversing orientation,
a reparametrization of a path can change the speed

This follows readily from the chain rule

Speed of y = ‖y′(t)‖ = |u′(t)|‖x′(t)‖ = |u′(t)| · (Speed of x)

Since u is one-one, it follows that either

u′(t) ≥ 0 for all t ∈ [a, b] or
u′(t) ≤ 0 for all t ∈ [a, b]

The first case occurs when y is orientation-preserving

The second case occurs when y is orientation-reversing
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Theorem 1.4

Let x : [a, b]→ Rn be a piecewise C 1 path

Let f : X ⊆ Rn → R be a continuous function whose domain
X contains the image of x

If y : [c , d ]→ Rn is any reparametrization of x, then∫
y
f ds =

∫
x
f ds

Remark

Theorems 1.4 tell us that scalar line integrals are independent
of the way we might choose to reparametrize a path
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Theorem 1.5

Let x : [a, b]→ Rn be a piecewise C 1 path

Let F : X ⊆ Rn → Rn be a continuous vector field whose
domain X contains the image of x

If y : [c , d ]→ Rn is any reparametrization of x, then

1. If y is orientation-preserving, then∫
y

F · ds =

∫
x

F · ds

2. If y is orientation-reversing, then∫
y

F · ds = −
∫

x

F · ds
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Theorem 1.5

Let x : [a, b]→ Rn be a piecewise C 1 path

Let F : X ⊆ Rn → Rn be a continuous vector field whose
domain X contains the image of x

If y : [c , d ]→ Rn is any reparametrization of x, then∫
y

F · ds =

∫
x

F · ds or

∫
y

F · ds = −
∫

x
F · ds

Remark

Theorems 1.5 tell us that vector line integrals are independent
of reparametrization up to a sign

This sign depends only on whether the reparametrization
preserves or reverses orientation
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Example 8

Let F = x i + y j, and consider the following three paths
between (0, 0) and (1, 1)

x(t) = (t, t), 0 ≤ t ≤ 1

y(t) = (2t, 2t), 0 ≤ t ≤ 1

2
z(t) = (1− t, 1− t), 0 ≤ t ≤ 1

The three paths are all reparametrizations of one another

x, y, and z all trace the line segment between (0, 0) and (1, 1)

x and y from (0, 0) to (1, 1), and
z from (1, 1) to (0, 0)

We can compare the values of the line integrals of F along
these paths

The results of these calculations must agree with what
Theorem 1.5 predicts

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 42 / 70



Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Example 8

Let F = x i + y j, and consider the following three paths
between (0, 0) and (1, 1)

x(t) = (t, t), 0 ≤ t ≤ 1

y(t) = (2t, 2t), 0 ≤ t ≤ 1

2
z(t) = (1− t, 1− t), 0 ≤ t ≤ 1∫

x
F · ds =

∫ 1

0
F(x(t)) · x′(t)dt =

∫ 1

0
(ti + tj) · (i + j)dt

=

∫ 1

0
2t dt = t2

∣∣1
0

= 1
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Example 8

Let F = x i + y j, and consider the following three paths
between (0, 0) and (1, 1)

x(t) = (t, t), 0 ≤ t ≤ 1

y(t) = (2t, 2t), 0 ≤ t ≤ 1

2
z(t) = (1− t, 1− t), 0 ≤ t ≤ 1∫

y
F · ds =

∫ 1
2

0
F(y(t)) · y′(t)dt =

∫ 1
2

0
(2ti + 2tj) · (2i + 2j)dt

=

∫ 1
2

0
8t dt = 4t2

∣∣ 1
2

0
= 1
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Scalar and Vector Line Integrals Green’s Theorem

Effect of reparametrization

Example 8

Let F = x i + y j, and consider the following three paths
between (0, 0) and (1, 1)

x(t) = (t, t), 0 ≤ t ≤ 1

y(t) = (2t, 2t), 0 ≤ t ≤ 1

2
z(t) = (1− t, 1− t), 0 ≤ t ≤ 1∫

z
F · ds =

∫ 1

0
F(z(t)) · z′(t)dt

=

∫ 1

0
((1− t)i + (1− t)j) · (−i− j)dt

=

∫ 1

0
2(t − 1) dt = (t − 1)2

∣∣1
0

= − 1
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Outline

1 Scalar and Vector Line Integrals
Scalar line integral
Vector line integral
Differential form of the line integral
Effect of reparametrization
Closed and simples curves

2 Green’s Theorem
Definition
Examples
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Closed and Simple Curves

Theorems 1.4 and 1.5 enable us to define line integrals over
curves rather than over parametrized paths

To be more explicit, we say that a piecewise C 1 path
x : [a, b]→ Rn is closed if x(a) = x(b)

We say that the path x is simple if it has no self-intersections

That is, if x is one-one on [a, b],
except possibly that x(a) may equal x(b)

Then, by a curve C , we now mean the image of a path
x : [a, b]→ Rn

This path is one-one except possibly
at finitely many points of [a, b]

The (nearly) one-one path x will be called a parametrization
of C
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Closed and Simple Curves
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Example 9

Consider the ellipse

x2

25
+

y2

9
= 1

It is a simple, closed curve that may be parametrized by either

x(t) = (5 cos t, 3 sin t), x : [0, 2π]→ R2

or

y(t) = (5 cos 2(π − t), 3 sin 2(π − t)), y : [0, π]→ R2
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Example 9

Consider the ellipse

x2

25
+

y2

9
= 1

Consider now the path

z(t) = (5 cos t, 3 sin t), z : [0, 6π]→ R2

It is not a parametrization, since it traces the ellipse three
times as t increases from 0 to 6π. z is not one-one.
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Example 10

Let C be the upper semicircle of radius 2, centered at (0, 0)
and oriented counterclockwise from (2, 0) to (−2, 0)

We calculate ∫
C

(x2 − y2 + 1)ds

We can choose any parametrization for C , for instance,

x(t) = (2 cos t, 2 sin t), 0 ≤ t ≤ π
or

y(t) = (−2 cos 2t,−2 sin 2t), − π

2
≤ t ≤ 0

Note that y(t) = x(2t + π)
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Example 10

Let C be the upper semicircle of radius 2, centered at (0, 0)
and oriented counterclockwise from (2, 0) to (−2, 0)

We calculate ∫
C

(x2 − y2 + 1)ds

x(t) = (2 cos t, 2 sin t), 0 ≤ t ≤ π
Then ∫

C
(x2 − y2 + 1)ds =

∫
x
(x2 − y2 + 1)ds

=

∫ π

0

(
4 cos2 t − 4 sin2 t + 1

)√
4 sin2 t + 4 cos2 t dt

By the double-angle formula cos(2t) = cos2 t − sin2 t

=

∫ π

0
(4 cos 2t + 1) 2 dt = 2 (sin 2t + t)|π0 = 2π
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Example 10

Let C be the upper semicircle of radius 2, centered at (0, 0)
and oriented counterclockwise from (2, 0) to (−2, 0)

We calculate ∫
C

(x2 − y2 + 1)ds

y(t) = (−2 cos 2t,−2 sin 2t), −π
2
≤ t ≤ 0

Then∫
C

(x2 − y2 + 1)ds =

∫
y

(x2 − y2 + 1)ds

=

∫ 0

−π/2

(
4 cos2 2t − 4 sin2 2t + 1

)√
16 sin2 2t + 16 cos2 2t dt

By the double-angle formula

=

∫ 0

−π/2

(4 cos 4t + 1) 4 dt = 4 (sin 4t + t)|0−π/2 = 2π

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 53 / 70



Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Example 11

Consider the force

F = x i− y j + (x + y + z)k

We calculate the work done by the force F on a particle that
moves

Along the parabola y = 3x2, z = 0
From the origin to the point (2, 12, 0)
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Example 11

Consider the force

F = x i− y j + (x + y + z)k

Along y = 3x2, z = 0, from (0, 0, 0) to (2, 12, 0)

We parametrize the parabola by

x = t, y = 3t2, z = 0 for 0 ≤ t ≤ 2

Then, by Definition 1.2

Work =

∫
C

F · ds =

∫
x

F · ds =

∫ 2

0
F(x(t)) · x′(t)dt

=

∫ 2

0

(
t,−3t2, t + 3t2

)
· (1, 6t, 0) dt =

∫ 2

0

(
t − 18t3

)
dt

=

(
1

2
t2 − 9

2
t4

)∣∣∣∣2
0

= 2− 72 = − 70
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Example 11

Consider the force

F = x i− y j + (x + y + z)k

Along y = 3x2, z = 0, from (0, 0, 0) to (2, 12, 0)

We parametrize the parabola by

x = t, y = 3t2, z = 0 for 0 ≤ t ≤ 2

Then, by Definition 1.2

Work =

∫
C

F · ds =

∫
x

F · ds =

∫ 2

0
F(x(t)) · x′(t)dt = −70

The meaning of the negative sign is that by moving along the
curve in the indicated direction, work is done against the force
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Scalar and Vector Line Integrals Green’s Theorem

Closed and simples curves

Example 11

Consider the force

F = x i− y j + (x + y + z)k

Along y = 3x2, z = 0, from (0, 0, 0) to (2, 12, 0)

We parametrize the parabola by

x = t, y = 3t2, z = 0 for 0 ≤ t ≤ 2

Then, by Definition 1.2

Work =

∫
C

F · ds =

∫
x

F · ds =

∫ 2

0
F(x(t)) · x′(t)dt = −70

If we orient the curve the opposite way, then the work done in
moving from (2, 12, 0) to (0, 0, 0) would be 70
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Scalar and Vector Line Integrals Green’s Theorem

Definition

Outline

1 Scalar and Vector Line Integrals
Scalar line integral
Vector line integral
Differential form of the line integral
Effect of reparametrization
Closed and simples curves

2 Green’s Theorem
Definition
Examples
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Scalar and Vector Line Integrals Green’s Theorem

Definition

Theorem 2.1: Green’s Theorem

Let D be a closed, bounded region in R2

Assume its boundary C = ∂D consists of finitely many simple,
closed, piecewise C 1 curves

Orient the curves of C so that D is on the left as one
traverses C

If F(x , y) = M(x , y)i + N(x , y)j is a vector field of class C 1

throughout D, then∮
C
Mdx + Ndy =

∫ ∫
D

(
∂N

∂x
− ∂M

∂y

)
dxdy
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Scalar and Vector Line Integrals Green’s Theorem

Definition

Theorem 2.1: Green’s Theorem

If F(x , y) = M(x , y)i + N(x , y)j is a vector field of class C 1

throughout D, then∮
C
Mdx + Ndy =

∫ ∫
D

(
∂N

∂x
− ∂M

∂y

)
dxdy

The symbol
∮
C indicates that the line integral is taken over

one or more closed curves

Green’s Theorem relates the vector line integral around a
closed curve C in R2 to an appropriate double integral

over the plane region D bounded by C

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 60 / 70



Scalar and Vector Line Integrals Green’s Theorem

Examples

Outline

1 Scalar and Vector Line Integrals
Scalar line integral
Vector line integral
Differential form of the line integral
Effect of reparametrization
Closed and simples curves

2 Green’s Theorem
Definition
Examples
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Scalar and Vector Line Integrals Green’s Theorem

Examples

Example 1

Let F = xy i + y2j and let D be the first quadrant region
bounded by the line y = x and the parabola y = x2

∂D is oriented counterclockwise, the orientation stipulated by
the statement of Green’s Theorem

We can calculate∮
∂D

F · ds =

∮
∂D

xy dx + y2 dy
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Scalar and Vector Line Integrals Green’s Theorem

Examples

Example 1

Let F = xy i + y2j and let D be the first quadrant region
bounded by the line y = x and the parabola y = x2

We need to parametrize the two C 1 pieces of ∂D separately

C1 :

{
x = t

y = t2
, 0 ≤ t ≤ 1 and C2 :

{
x = 1− t

y = 1− t
, 0 ≤ t ≤ 1

Note the orientations of C1 and C2
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Scalar and Vector Line Integrals Green’s Theorem

Examples

Example 1

F = xy i + y2j, D be the first quadrant bounded by y = x and y = x2

C1 :

{
x = t

y = t2
, 0 ≤ t ≤ 1 and C2 :

{
x = 1− t

y = 1− t
, 0 ≤ t ≤ 1

Then∮
∂D

xy dx + y2 dy =

∮
C1

xy dx + y2 dy +

∮
C2

xy dx + y2 dy

=

∫ 1

0

(
t · t2 + t4 · 2t

)
dt +

∫ 1

0

(
(1− t)2 + (1− t)2

)
(−dt)

=

∫ 1

0

(
t3 + 2t5

)
dt +

∫ 1

0
2(1− t)2(−dt)

=

(
1

4
t4 +

2

6
t6

)∣∣∣∣1
0

+

(
2

3
(1− t)3

)∣∣∣∣1
0

=
1

4
+

2

6
− 2

3
= − 1

12
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Scalar and Vector Line Integrals Green’s Theorem

Examples

Example 1

F = xy i + y2j, D be the first quadrant bounded by y = x and y = x2

C1 :

{
x = t

y = t2
, 0 ≤ t ≤ 1 and C2 :

{
x = 1− t

y = 1− t
, 0 ≤ t ≤ 1

On the other hand∫ ∫
D

(
∂

∂x

(
y2
)
− ∂

∂y
(xy)

)
dxdy =

∫ 1

0

∫ x

x2

− x dydx

=

∫ 1

0
− x

(
x − x2

)
dx =

∫ 1

0

(
x3 − x2

)
dx =

(
1

4
x4 − 1

3
x3

)∣∣∣∣1
0

=
1

4
− 1

3
= − 1

12

The line integral and the double integral agree
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Scalar and Vector Line Integrals Green’s Theorem

Examples

Example 2

Let C be the circle of radius a, oriented counterclockwise

Then, C is the boundary of the disk D of radius a

We calculate the line integral∮
C
− y dx + x dy

Although we can parametrize C and thus evaluate the line
integral, it is easier to employ Green’s Theorem instead
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Scalar and Vector Line Integrals Green’s Theorem

Examples

Example 2

Let C be the circle of radius a, oriented counterclockwise

Then, C is the boundary of the disk D of radius a

We calculate line integral∮
C
−y dx + x dy =

∫ ∫
D

(
∂

∂x
(x)− ∂

∂y
(−y)

)
dxdy

=

∫ ∫
D

2 dxdy = 2(Area of D) = 2πa2
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Scalar and Vector Line Integrals Green’s Theorem

Examples

Generalization of Example 2

Suppose D is any region to which Green’s Theorem can be
applied

Then, orienting ∂D appropriately, we have

1

2

∮
∂D
− y dx + x dy =

1

2

∫ ∫
D

2 dxdy = Area of D

Thus, we can calculate the area of a region (two-dimensional)
by using line integrals (one-dimensional )
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Scalar and Vector Line Integrals Green’s Theorem

Examples

Example 3

We compute the area inside the ellipse

x2

a2
+

y2

b2
= 1

The ellipse itself may be parametrized counterclockwise by{
x = a cos t

y = b sin t
, 0 ≤ t ≤ 2π
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Scalar and Vector Line Integrals Green’s Theorem

Examples

Example 3

We compute the area inside the ellipse

x2

a2
+

y2

b2
= 1,

{
x = a cos t

y = b sin t
, 0 ≤ t ≤ 2π

Then
Area of ellipse =

1

2

∮
∂D

− y dx + x dy

=
1

2

∫ 2π

0

− b sin t(−a sin t dt) + a cos t(b cos t dt)

=
1

2

∫ 2π

0

(
ab sin2 t + ab cos2 t

)
dt =

1

2

∫ 2π

0

ab dt = πab
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