Métodos Matemáticos de Bioingeniería

Grado en Ingeniería Biomédica Lecture 20

Marius A. Marinescu
Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos
10 de mayo de 2021

Outline

(1) Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves
(2) Green's Theorem
- Definition
- Examples

Scalar line integral

Outline

(1) Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves
(2) Green's Theorem
- Definition
- Examples

Scalar Line Integral as a limit of a Riemann sum

- Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{3}$ be a path of class C^{1}
- Let $f: X \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function
- Suppose that domain X contains the image of \mathbf{x}, so that the composite $f(\mathbf{x}(t))$ is defined
- As with every other integral, the scalar line integral is a limit of appropriate Riemann sums
- Consider a partition of $[a, b]$

$$
a=t_{0}<t_{1}<\cdots<t_{k}<\cdots<t_{n}=b
$$

Scalar Line Integral as a limit of a Riemann sum

$$
\begin{aligned}
& a=t_{0}<t_{1}<\cdots<t_{k}<\cdots<t_{n}=b
\end{aligned}
$$

- Let us think of
- The image of the path \mathbf{x} as representing an idealized wire in space
- $f(\mathbf{x}(t))$ as the electrical charge density of the wire
- Then, the Riemann sum approximates the total charge of the wire

$$
\text { Total charge }=\lim _{\text {all } \Delta \mathbf{t}_{\mathbf{k}} \rightarrow 0} \sum_{k=1}^{n} f\left(\mathbf{x}\left(t_{k}^{*}\right)\right) \Delta s_{k}
$$

Definition 1.1: Scalar Line Integral

- The scalar line integral of f along the C^{1} path \mathbf{x} is

$$
\int_{a}^{b} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

- We denote this integral

$$
\int_{\mathbf{x}} f d s
$$

Remarks

- The line integral represents a sum of values of f along \mathbf{x}, times "infinitesimal" pieces of arclength of \mathbf{x}

Remarks

- Definition 1.1 can be made for arbitrary n, that is, for functions f defined on domains in \mathbb{R}^{n} for arbitrary n

Remarks

- We can still define the scalar line integral if
- \mathbf{x} is not of class C^{1}, but only "piecewise" C^{1}
- $f(\mathbf{x}(t))$ is only piecewise continuous

Example 1

- Let $f(x, y, z)=x y+z$ and $\mathbf{x}:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ be the helix

$$
\mathbf{x}(t)=(\cos t, \sin t, t)
$$

- We compute

$$
\int_{\mathbf{x}} f d s=\int_{0}^{2 \pi} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

- First, from the double-angle formula

$$
\begin{aligned}
f(\mathbf{x}(t)) & =\cos t \sin t+t=\frac{1}{2} \sin 2 t+t \\
\mathbf{x}^{\prime}(t) & =(-\sin t, \cos t, 1) \\
\left\|\mathbf{x}^{\prime}(t)\right\| & =\sqrt{\sin ^{2} t+\cos ^{2} t+1}=\sqrt{2}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
f(x, y, z) & =x y+z \quad \text { and } \quad \mathbf{x}(t)=(\cos t, \sin t, t) \\
f(\mathbf{x}(t)) & =\cos t \sin t+t=\frac{1}{2} \sin 2 t+t \\
\mathbf{x}^{\prime}(t) & =(-\sin t, \cos t, 1), \quad\left\|\mathbf{x}^{\prime}(t)\right\|=\sqrt{\sin ^{2} t+\cos ^{2} t+1}=\sqrt{2}
\end{aligned}
$$

- Thus

$$
\begin{aligned}
& \int_{\mathbf{x}} f d s=\int_{0}^{2 \pi} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t=\int_{0}^{2 \pi}\left(\frac{1}{2} \sin 2 t+t\right) \sqrt{2} d t \\
& =\sqrt{2} \int_{0}^{2 \pi}\left(\frac{1}{2} \sin 2 t+t\right) d t=\left.\sqrt{2}\left(-\frac{1}{4} \cos 2 t+\frac{1}{2} t^{2}\right)\right|_{0} ^{2 \pi} \\
& =\sqrt{2}\left(\left(-\frac{1}{4}+2 \pi^{2}\right)-\left(-\frac{1}{4}+0\right)\right)=2 \sqrt{2} \pi^{2}
\end{aligned}
$$

Example 2

- Let $f(x, y)=y-x$ and let $\mathbf{x}:[0,3] \rightarrow \mathbb{R}^{2}$ be the planar path

$$
\mathbf{x}(t)= \begin{cases}(2 t, t) & \text { if } 0 \leq t \leq 1 \\ (t+1,5-4 t) & \text { if } 1<t \leq 3\end{cases}
$$

- Hence, \mathbf{x} is piecewise C^{1} path
- The two path segments defined for t in $[0,1]$ and for t in $[1,3]$ are each of class C^{1}

Example 2

- Let $f(x, y)=y-x$ and let $\mathbf{x}:[0,3] \rightarrow \mathbb{R}^{2}$ be the planar path

$$
\mathbf{x}(t)= \begin{cases}(2 t, t) & \text { if } 0 \leq t \leq 1 \\ (t+1,5-4 t) & \text { if } 1<t \leq 3\end{cases}
$$

- Thus

$$
\int_{\mathrm{x}} f d s=\int_{\mathrm{x}_{1}} f d s+\int_{\mathrm{x}_{2}} f d s
$$

Example 2

- Let $f(x, y)=y-x$ and let $\mathbf{x}:[0,3] \rightarrow \mathbb{R}^{2}$ be the planar path

$$
\mathbf{x}(t)= \begin{cases}(2 t, t) & \text { if } 0 \leq t \leq 1 \\ (t+1,5-4 t) & \text { if } 1<t \leq 3\end{cases}
$$

- Thus

$$
\int_{\mathbf{x}} f d s=\int_{\mathbf{x}_{1}} f d s+\int_{\mathrm{x}_{2}} f d s
$$

where

- $\mathbf{x}_{\mathbf{1}}(t)=(2 t, t)$ for $0 \leq t \leq 1$
- $\mathbf{x}_{2}(t)=(t+1,5-4 t)$ for $1<t \leq 3$
- It is easy to see that

$$
\left\|\mathbf{x}_{1}{ }^{\prime}(t)\right\|=\sqrt{5} \quad \text { and } \quad\left\|\mathbf{x}_{\mathbf{2}}{ }^{\prime}(t)\right\|=\sqrt{17}
$$

Example 2

- Let $f(x, y)=y-x$ and let $\mathbf{x}:[0,3] \rightarrow \mathbb{R}^{2}$ be the planar path

$$
\begin{aligned}
& \mathbf{x}(t)= \begin{cases}(2 t, t) & \text { if } 0 \leq t \leq 1 \\
(t+1,5-4 t) & \text { if } 1<t \leq 3\end{cases} \\
& \left\|\mathbf{x}_{1}{ }^{\prime}(t)\right\|=\sqrt{5} \text { and }\left\|\mathbf{x}^{\prime}(t)\right\|=\sqrt{17}
\end{aligned}
$$

- Thus

$$
\begin{aligned}
& \int_{\mathbf{x}_{1}} f d s=\int_{0}^{1} f\left(\mathbf{x}_{1}(t)\right)\left\|\mathbf{x}_{1}{ }^{\prime}(t)\right\| d t=\int_{0}^{1}(t-2 t) \cdot \sqrt{5} d t=-\left.\frac{\sqrt{5}}{2} t^{2}\right|_{0} ^{1}=-\frac{\sqrt{5}}{2} \\
& \int_{\mathbf{x}_{2}} f d s=\int_{1}^{3} f\left(\mathbf{x}_{2}(t)\right)\left\|\mathbf{x}_{2}{ }^{\prime}(t)\right\| d t=\int_{1}^{3}((5-4 t)-(t+1)) \cdot \sqrt{17} d t \\
& =\left.\sqrt{17}\left(4 t-\frac{5}{2} t^{2}\right)\right|_{1} ^{3}=-12 \sqrt{17}
\end{aligned}
$$

Geometric Interpretation of Scalar Line Integrals

- Let $f(x, y)=2+x^{2} y$ and let $\mathbf{x}:[0, \pi] \rightarrow \mathbb{R}^{2}$ be the planar path

$$
\mathbf{x}(t)=(\cos t, \sin t), \quad 0 \leq t \leq \pi
$$

- Then

$$
f(\mathbf{x}(t))=f(x(t), y(t))=2+\cos ^{2} t \sin t
$$

- The line integral of f along \mathbf{x} is the area of the "fence" whose
- Path is governed by \mathbf{x}
- Height is governed by f

Vector line integral

Outline

(1) Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves
(2) Green's Theorem
- Definition
- Examples

Definition 1.2

- Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a path of class C^{1}
- Let $\mathbf{F}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a vector field
- Suppose that X contains the image of \mathbf{x} and assume that \mathbf{F} varies continuously along \mathbf{x}
- The vector line integral of \mathbf{F} along $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$, is

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t
$$

Remarks

- As with scalar line integrals, we may define the vector line integrals when \mathbf{x} is a piecewise C^{1} path
- We juste need to break up the integral in a suitable manner

Vector line integral

Example 3

- Let \mathbf{F} be the radial vector field on \mathbb{R}^{3} given by

$$
\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

- Let $\mathbf{x}:[0,1] \rightarrow \mathbb{R}^{3}$ be the path

$$
\mathbf{x}(t)=\left(t, 3 t^{2}, 2 t^{3}\right)
$$

- Then

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =\left(1,6 t, 6 t^{2}\right) \\
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s} & =\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t \\
& =\int_{0}^{1}\left(t \mathbf{i}+3 t^{2} \mathbf{j}+2 t^{3} \mathbf{k}\right) \cdot\left(\mathbf{i}+6 t \mathbf{j}+6 t^{2} \mathbf{k}\right) d t \\
& =\int_{0}^{1}\left(t+18 t^{3}+12 t^{5}\right) d t=\left.\left(\frac{1}{2} t^{2}+\frac{9}{2} t^{4}+2 t^{6}\right)\right|_{0} ^{1}=7
\end{aligned}
$$

Physical Interpretation of Vector Line Integrals

- Consider \mathbf{F} to be a force field in space
- Then, the vector line integral could represent the work done by \mathbf{F} on a particle as the particle moves along the path \mathbf{x}

$$
\text { Total Work }=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t=\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}
$$

Simplified example

- Suppose \mathbf{F} is a constant vector field and \mathbf{x} is a straight-line

Physical Interpretation of Vector Line Integrals

- Consider \mathbf{F} to be a force field in space
- Then, the vector line integral could represent the work done by \mathbf{F} on a particle as the particle moves along the path \mathbf{x}

$$
\text { Total Work }=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t=\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}
$$

Simplified example

- Suppose \mathbf{F} is a constant vector field and \mathbf{x} is a straight-line
- Then, the work done by \mathbf{F} in moving a particle from one point A along \mathbf{x} to another point B is given by

$$
\text { Work }=\mathbf{F} \cdot \Delta \mathbf{s}=\mathbf{F} \cdot(B-A)
$$

Differential Geometry Interpretation

- Suppose $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is a C^{1} path with $\mathbf{x}^{\prime}(t) \neq \mathbf{0}$ for $a \leq t \leq b$
- Recall that we define the unit tangent vector \mathbf{T} to \mathbf{x} by normalizing the velocity

$$
\mathbf{T}=\frac{\mathbf{x}^{\prime}(t)}{\left\|\mathbf{x}^{\prime}(t)\right\|}
$$

- Then

$$
\begin{aligned}
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s} & =\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t \\
& =\int_{a}^{b}(\mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{T}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t=\int_{\mathbf{x}}(\mathbf{F} \cdot \mathbf{T}) d s
\end{aligned}
$$

Differential Geometry Interpretation

- Suppose $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is a C^{1} path with $\mathbf{x}^{\prime}(t) \neq \mathbf{0}$ for $a \leq t \leq b$
- Then

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}}(\mathbf{F} \cdot \mathbf{T}) d s
$$

- Since the dot product $\mathbf{F} \cdot \mathbf{T}$ is a scalar quantity, we have written the original vector line integral as a scalar line integral
- It represents the (scalar) line integral of the tangential component of \mathbf{F} along the path

Differential Geometry Interpretation

- Suppose $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is a C^{1} path with $\mathbf{x}^{\prime}(t) \neq \mathbf{0}$ for $a \leq t \leq b$
- Then

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}}(\mathbf{F} \cdot \mathbf{T}) d s
$$

Vector line integral

Example 4

- The circle $x^{2}+y^{2}=9$ may be parametrized by

$$
\left\{\begin{array}{l}
x=3 \cos t \\
y=3 \sin t
\end{array} \quad, 0 \leq t \leq 2 \pi\right.
$$

- Hence, a unit tangent vector is

$$
\mathbf{T}=\frac{-3 \sin t \mathbf{i}+3 \cos t \mathbf{j}}{\sqrt{9 \sin ^{2} t+9 \cos ^{2} t}}=-\sin t \mathbf{i}+\cos t \mathbf{j}=\frac{-y \mathbf{i}+x \mathbf{j}}{3}
$$

- Now consider the radial vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$ on \mathbb{R}^{2}
- At every point along the circle we have

$$
\mathbf{F} \cdot \mathbf{T}=(x \mathbf{i}+y \mathbf{j}) \cdot\left(\frac{-y \mathbf{i}+x \mathbf{j}}{3}\right)=0
$$

Example 4

$$
\left\{\begin{array}{l}
x=3 \cos t \\
y=3 \sin t
\end{array} \quad, 0 \leq t \leq 2 \pi, \mathbf{T}=\frac{-y \mathbf{i}+x \mathbf{j}}{3} \text { and } \mathbf{F}=x \mathbf{i}+y \mathbf{j} \Rightarrow \mathbf{F} \cdot \mathbf{T}=0\right.
$$

- Thus, \mathbf{F} is always perpendicular to the curve, and

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}}(\mathbf{F} \cdot \mathbf{T}) d s=\int_{\mathbf{x}} 0 d s=0
$$

Considering F as a force, no work is done

Outline

(1) Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves
(2) Green's Theorem
- Definition
- Examples

Differential Form of the Line Integral

- Suppose that $\mathbf{x}(t)=(x(t), y(t), z(t)), a \leq t \leq b$, is a C^{1} path
- Consider a continuous vector field \mathbf{F} written as

$$
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}
$$

- Then, from Definition 1.2 of the vector line integral, we have

$$
\begin{aligned}
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s} & =\int_{a}^{b}(M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}) \\
& \left(x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}\right) d t \\
= & \int_{a}^{b}\left(M(x, y, z) x^{\prime}(t)+N(x, y, z) y^{\prime}(t)+P(x, y, z) z^{\prime}(t)\right) d t
\end{aligned}
$$

$$
\text { Recall that } d x=x^{\prime}(t) d t, d y=y^{\prime}(t) d t, d z=z^{\prime}(t) d t
$$

$$
=\int_{\mathbf{x}} M(x, y, z) d x+N(x, y, z) d y+P(x, y, z) d z
$$

Differential Form of the Line Integral

- Suppose that $\mathbf{x}(t)=(x(t), y(t), z(t)), a \leq t \leq b$, is a C^{1} path
- Consider a continuous vector field \mathbf{F} written as

$$
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}
$$

- Then, from Definition 1.2 of the vector line integral, we have

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} M(x, y, z) d x+N(x, y, z) d y+P(x, y, z) d z
$$

- A notational alternative is

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} M d x+N d y+P d z
$$

The differential form of the line integral

Differential Form of the Line Integral

- Suppose that $\mathbf{x}(t)=(x(t), y(t), z(t)), a \leq t \leq b$, is a C^{1} path
- Consider a continuous vector field \mathbf{F} written as

$$
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}
$$

- Then, from Definition 1.2 of the vector line integral, we have

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} M(x, y, z) d x+N(x, y, z) d y+P(x, y, z) d z
$$

- A alternative notation is

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} M d x+N d y+P d z
$$

- $M d x+N d y+P d z$ is itself called a differential form
- $M d x+N d y+P d z$ should be evaluated using the parametric equations for x, y, and z

Example 5

- Let \mathbf{x} be the path $\mathbf{x}(t)=\left(t, t^{2}, t^{3}\right)$ for $0 \leq t \leq 1$
- We compute

$$
\int_{\mathbf{x}}(y+z) d x+(x+z) d y+(x+y) d z
$$

- Along the path, we have

$$
x=t \Rightarrow d x=d t, y=t^{2} \Rightarrow d y=2 t d t, z=t^{3} \Rightarrow d z=3 t^{2} d t
$$

- Therefore

$$
\begin{aligned}
& \int_{\mathbf{x}}(y+z) d x+(x+z) d y+(x+y) d z \\
& =\int_{0}^{1}\left(t^{2}+t^{3}\right) d t+\left(t+t^{3}\right) 2 t d t+\left(t+t^{2}\right) 3 t^{2} d t \\
& =\int_{0}^{1}\left(5 t^{4}+4 t^{3}+3 t^{2}\right) d t=\left.\left(t^{5}+t^{4}+t^{3}\right)\right|_{0} ^{1}=3
\end{aligned}
$$

Outline

(1) Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves
(2) Green's Theorem
- Definition
- Examples

The Effect of Reparametrization

- The unit tangent vector to a path depends on the geometry of the underlying curve

It doesn't depend on the particular parametrization

- We might expect the line integral likewise to depend only on the image curve
- For example, consider the following two paths in the plane

$$
\begin{aligned}
& \mathbf{x}:[0,2 \pi] \rightarrow \mathbb{R}^{2}, \quad \mathbf{x}(t)=(\cos t, \sin t) \\
& \mathbf{y}:[0, \pi] \rightarrow \mathbb{R}^{2}, \quad \mathbf{y}(t)=(\cos 2 t, \sin 2 t)
\end{aligned}
$$

- Both \mathbf{x} and \mathbf{y} trace out a circle once in a counterclockwise sense
- If we let $u(t)=2 t$, then we see that $\mathbf{y}(t)=\mathbf{x}(u(t))$

Definition 1.3

- Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a piecewise C^{1} path
- Consider another C^{1} path $\mathbf{y}:[c, d] \rightarrow \mathbb{R}^{n}$
- We say that \mathbf{y} is a reparametrization of \mathbf{x} if there is a one-one and onto function $u:[c, d] \rightarrow[a, b]$ of class C^{1}
- With inverse $u^{-1}:[a, b] \rightarrow[c, d]$ that is also of class C^{1}
- Such that $\mathbf{y}(t)=\mathbf{x}(u(t))$, that is, $\mathbf{y}=\mathbf{x} \circ u$

Remark

- Thus, any reparametrization of a path must have the same underlying image curve as the original path

Example 6

- Consider the path

$$
\mathbf{x}(t)=(1+2 t, 2-t, 3+5 t), \quad 0 \leq t \leq 1
$$

- It traces the line segment from the point $(1,2,3)$ to the point $(3,1,8)$

1. So does the path

$$
\mathbf{y}(t)=\left(1+2 t^{2}, 2-t^{2}, 3+5 t^{2}\right), \quad 0 \leq t \leq 1
$$

- We have that \mathbf{y} is a reparametrization of \mathbf{x} via the change of variable

$$
u(t)=t^{2}
$$

Example 6

- Consider the path

$$
\mathbf{x}(t)=(1+2 t, 2-t, 3+5 t), \quad 0 \leq t \leq 1
$$

- It traces the line segment from the point $(1,2,3)$ to the point $(3,1,8)$

2. We consider now the path $\mathbf{z}:[-1,1] \rightarrow \mathbb{R}^{3}$

$$
\mathbf{z}(t)=\left(1+2 t^{2}, 2-t^{2}, 3+5 t^{2}\right), \quad-1 \leq t \leq 1
$$

- It is not a reparametrization of \mathbf{x}
- We also have $\mathbf{z}(t)=\mathbf{x}(u(t))$, where $u(t)=t^{2}$
- But in this case u maps $[-1,1]$ onto $[0,1]$ in a way that is not one-one

Example 6

- Consider the path

$$
\mathbf{x}(t)=(1+2 t, 2-t, 3+5 t), \quad 0 \leq t \leq 1
$$

- It traces the line segment from the point $(1,2,3)$ to the point $(3,1,8)$

3. We finally consider the path $\mathbf{w}:[0,1] \rightarrow \mathbb{R}^{3}$

$$
\mathbf{w}(t)=(3-2 t, 1+t, 8-5 t), \quad 0 \leq t \leq 1
$$

- It is a reparametrization of \mathbf{x}
- We have $\mathbf{w}(t)=\mathbf{x}(1-t)$
- So the function $u:[0,1] \rightarrow[0,1]$ given by $u(t)=1-t$ provides the change of variable for the reparametrization.

Geometrically, w traces the line segment between $(1,2,3)$ and $(3,1,8)$ in the opposite direction to \mathbf{x}

Reparametrization and Orientation

- Let $\mathbf{y}:[c, d] \rightarrow \mathbb{R}^{n}$ be a reparametrization of $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ via the change of variable $u:[c, d] \rightarrow[a, b]$
- Then, since u is one-one, onto, and continuous, we must have either

$$
\begin{aligned}
& \text { 1. } u(c)=a \text { and } u(d)=b \text {, or } \\
& \text { 2. } u(c)=b \text { and } u(d)=a
\end{aligned}
$$

- In case 1 , we say that \mathbf{y} (or u) is orientation-preserving
y traces out the same image curve
in the same direction that \mathbf{x} does
- In case 2 , we say that \mathbf{y} (or u) is orientation-reversing
y traces out the same image curve in the opposite direction that \mathbf{x} does

Example 7

- Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be any C^{1} path
- Then, we may define the opposite path $\mathbf{x}_{o p p}:[a, b] \rightarrow \mathbb{R}^{n}$ by

$$
\mathbf{x}_{\text {opp }}(t)=\mathbf{x}(a+b-t)
$$

- That is, $\mathbf{x}_{\text {opp }}(t)=\mathbf{x}(u(t))$, where $u:[a, b] \rightarrow[a, b]$ is given by

$$
u(t)=a+b-t
$$

- Clearly, then, $\mathbf{x}_{\text {opp }}(t)$ is an orientation-reversing reparametrization of \mathbf{x}

Reparametrization and Velocity

In addition to reversing orientation, a reparametrization of a path can change the speed

- This follows readily from the chain rule

$$
\text { Speed of } \mathbf{y}=\left\|\mathbf{y}^{\prime}(t)\right\|=\left|u^{\prime}(t)\right|\left\|\mathbf{x}^{\prime}(t)\right\|=\left|u^{\prime}(t)\right| \cdot(\text { Speed of } \mathbf{x})
$$

- Since u is one-one, it follows that either
- $u^{\prime}(t) \geq 0$ for all $t \in[a, b]$ or
- $u^{\prime}(t) \leq 0$ for all $t \in[a, b]$
- The first case occurs when \mathbf{y} is orientation-preserving
- The second case occurs when \mathbf{y} is orientation-reversing

Theorem 1.4

- Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a piecewise C^{1} path
- Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function whose domain X contains the image of \mathbf{x}
- If $\mathbf{y}:[c, d] \rightarrow \mathbb{R}^{n}$ is any reparametrization of \mathbf{x}, then

$$
\int_{\mathbf{y}} f d s=\int_{\mathbf{x}} f d s
$$

Remark

- Theorems 1.4 tell us that scalar line integrals are independent of the way we might choose to reparametrize a path

Theorem 1.5

- Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a piecewise C^{1} path
- Let $\mathbf{F}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous vector field whose domain X contains the image of \mathbf{x}
- If $\mathbf{y}:[c, d] \rightarrow \mathbb{R}^{n}$ is any reparametrization of \mathbf{x}, then

1. If \mathbf{y} is orientation-preserving, then

$$
\int_{\mathbf{y}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}
$$

2. If \mathbf{y} is orientation-reversing, then

$$
\int_{\mathbf{y}} \mathbf{F} \cdot d \mathbf{s}=-\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}
$$

Theorem 1.5

- Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a piecewise C^{1} path
- Let $\mathbf{F}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous vector field whose domain X contains the image of \mathbf{x}
- If $\mathbf{y}:[c, d] \rightarrow \mathbb{R}^{n}$ is any reparametrization of \mathbf{x}, then

$$
\int_{\mathbf{y}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s} \quad \text { or } \int_{\mathbf{y}} \mathbf{F} \cdot d \mathbf{s}=-\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}
$$

Remark

- Theorems 1.5 tell us that vector line integrals are independent of reparametrization up to a sign
- This sign depends only on whether the reparametrization preserves or reverses orientation

Example 8

- Let $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$, and consider the following three paths between $(0,0)$ and $(1,1)$

$$
\begin{array}{lll}
\mathbf{x}(t) & =(t, t), & 0 \leq t \leq 1 \\
\mathbf{y}(t) & =(2 t, 2 t), & 0 \leq t \leq \frac{1}{2} \\
\mathbf{z}(t) & =(1-t, 1-t), & \\
0 \leq t \leq 1
\end{array}
$$

- The three paths are all reparametrizations of one another
- \mathbf{x}, \mathbf{y}, and \mathbf{z} all trace the line segment between $(0,0)$ and $(1,1)$
- \mathbf{x} and \mathbf{y} from $(0,0)$ to $(1,1)$, and
- \mathbf{z} from $(1,1)$ to $(0,0)$
- We can compare the values of the line integrals of \mathbf{F} along these paths
- The results of these calculations must agree with what Theorem 1.5 predicts

Example 8

- Let $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$, and consider the following three paths between $(0,0)$ and $(1,1)$

$$
\begin{array}{rlr}
\mathbf{x}(t)=(t, t), & 0 \leq t \leq 1 \\
\mathbf{y}(t)=(2 t, 2 t), & 0 \leq t \leq \frac{1}{2} \\
\mathbf{z}(t)=(1-t, 1-t), & 0 \leq t \leq 1 \\
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{1} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t=\int_{0}^{1}(t \mathbf{i}+t \mathbf{j}) \cdot(\mathbf{i}+\mathbf{j}) d t \\
= & \int_{0}^{1} 2 t d t=\left.t^{2}\right|_{0} ^{1}=1
\end{array}
$$

Example 8

- Let $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$, and consider the following three paths between $(0,0)$ and $(1,1)$

$$
\begin{aligned}
& \mathbf{x}(t)=(t, t), \quad 0 \leq t \leq 1 \\
& \mathbf{y}(t)=(2 t, 2 t), \quad 0 \leq t \leq \frac{1}{2} \\
& \mathbf{z}(t)=(1-t, 1-t), \quad 0 \leq t \leq 1 \\
& \int_{\mathbf{y}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{\frac{1}{2}} \mathbf{F}(\mathbf{y}(t)) \cdot \mathbf{y}^{\prime}(t) d t=\int_{0}^{\frac{1}{2}}(2 t \mathbf{i}+2 t \mathbf{j}) \cdot(2 \mathbf{i}+2 \mathbf{j}) d t \\
& =\int_{0}^{\frac{1}{2}} 8 t d t=\left.4 t^{2}\right|_{0} ^{\frac{1}{2}}=1
\end{aligned}
$$

Example 8

- Let $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$, and consider the following three paths between $(0,0)$ and $(1,1)$

$$
\begin{array}{rlrl}
\mathbf{x}(t) & =(t, t), & & 0 \leq t \leq 1 \\
\mathbf{y}(t) & =(2 t, 2 t), & & 0 \leq t \leq \frac{1}{2} \\
\mathbf{z}(t) & =(1-t, 1-t), & & 0 \leq t \leq 1 \\
\int_{\mathbf{z}} \mathbf{F} \cdot d \mathbf{s} & =\int_{0}^{1} \mathbf{F}(\mathbf{z}(t)) \cdot \mathbf{z}^{\prime}(t) d t \\
& =\int_{0}^{1}((1-t) \mathbf{i}+(1-t) \mathbf{j}) \cdot(-\mathbf{i}-\mathbf{j}) d t \\
& =\int_{0}^{1} 2(t-1) d t=\left.(t-1)^{2}\right|_{0} ^{1}=-1
\end{array}
$$

Outline

(1) Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves
(2) Green's Theorem
- Definition
- Examples

Closed and Simple Curves

- Theorems 1.4 and 1.5 enable us to define line integrals over curves rather than over parametrized paths
- To be more explicit, we say that a piecewise C^{1} path $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is closed if $\mathbf{x}(a)=\mathbf{x}(b)$
- We say that the path \mathbf{x} is simple if it has no self-intersections

That is, if \mathbf{x} is one-one on $[a, b]$, except possibly that $\mathbf{x}(a)$ may equal $\mathbf{x}(b)$

- Then, by a curve C, we now mean the image of a path $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$

This path is one-one except possibly
at finitely many points of $[a, b]$

- The (nearly) one-one path \mathbf{x} will be called a parametrization of C

Closed and Simple Curves

Example 9

- Consider the ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

- It is a simple, closed curve that may be parametrized by either

$$
\begin{aligned}
\mathbf{x}(t) & =(5 \cos t, 3 \sin t), \quad \mathbf{x}:[0,2 \pi] \rightarrow \mathbb{R}^{2} \\
& \text { or } \\
\mathbf{y}(t) & =(5 \cos 2(\pi-t), 3 \sin 2(\pi-t)), \quad \mathbf{y}:[0, \pi] \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

Example 9

- Consider the ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

- Consider now the path

$$
\mathbf{z}(t)=(5 \cos t, 3 \sin t), \quad \mathbf{z}:[0,6 \pi] \rightarrow \mathbb{R}^{2}
$$

- It is not a parametrization, since it traces the ellipse three times as t increases from 0 to 6π. \mathbf{z} is not one-one.

Example 10

- Let C be the upper semicircle of radius 2 , centered at $(0,0)$ and oriented counterclockwise from $(2,0)$ to $(-2,0)$
- We calculate

$$
\int_{C}\left(x^{2}-y^{2}+1\right) d s
$$

- We can choose any parametrization for C, for instance,

$$
\begin{aligned}
\mathbf{x}(t) & =(2 \cos t, 2 \sin t), \quad 0 \leq t \leq \pi \\
& \text { or } \\
\mathbf{y}(t) & =(-2 \cos 2 t,-2 \sin 2 t), \quad-\frac{\pi}{2} \leq t \leq 0
\end{aligned}
$$

- Note that $\mathbf{y}(t)=\mathbf{x}(2 t+\pi)$

Example 10

- Let C be the upper semicircle of radius 2 , centered at $(0,0)$ and oriented counterclockwise from $(2,0)$ to $(-2,0)$
- We calculate

$$
\begin{aligned}
& \int_{C}\left(x^{2}-y^{2}+1\right) d s \\
& \mathbf{x}(t)=(2 \cos t, 2 \sin t), \quad 0 \leq t \leq \pi
\end{aligned}
$$

- Then

$$
\begin{aligned}
& \int_{C}\left(x^{2}-y^{2}+1\right) d s=\int_{x}\left(x^{2}-y^{2}+1\right) d s \\
& =\int_{0}^{\pi}\left(4 \cos ^{2} t-4 \sin ^{2} t+1\right) \sqrt{4 \sin ^{2} t+4 \cos ^{2} t} d t \\
& \text { By the double-angle formula } \cos (2 t)=\cos ^{2} t-\sin ^{2} t \\
& =\int_{0}^{\pi}(4 \cos 2 t+1) 2 d t=\left.2(\sin 2 t+t)\right|_{0} ^{\pi}=2 \pi
\end{aligned}
$$

Example 10

- Let C be the upper semicircle of radius 2 , centered at $(0,0)$ and oriented counterclockwise from $(2,0)$ to $(-2,0)$
- We calculate

$$
\begin{aligned}
& \quad \int_{C}\left(x^{2}-y^{2}+1\right) d s \\
& \mathbf{y}(t)=(-2 \cos 2 t,-2 \sin 2 t), \quad-\frac{\pi}{2} \leq t \leq 0
\end{aligned}
$$

- Then

$$
\begin{aligned}
& \int_{C}\left(x^{2}-y^{2}+1\right) d s=\int_{\mathbf{y}}\left(x^{2}-y^{2}+1\right) d s \\
& =\int_{-\pi / 2}^{0}\left(4 \cos ^{2} 2 t-4 \sin ^{2} 2 t+1\right) \sqrt{16 \sin ^{2} 2 t+16 \cos ^{2} 2 t} d t
\end{aligned}
$$

By the double-angle formula
$=\int_{-\pi / 2}^{0}(4 \cos 4 t+1) 4 d t=\left.4(\sin 4 t+t)\right|_{-\pi / 2} ^{0}=2 \pi$

Example 11

- Consider the force

$$
\mathbf{F}=x \mathbf{i}-y \mathbf{j}+(x+y+z) \mathbf{k}
$$

- We calculate the work done by the force F on a particle that moves
- Along the parabola $y=3 x^{2}, z=0$
- From the origin to the point $(2,12,0)$

Example 11

- Consider the force

$$
\begin{aligned}
& \mathbf{F}=x \mathbf{i}-y \mathbf{j}+(x+y+z) \mathbf{k} \\
& \text { Along } y=3 x^{2}, z=0, \text { from }(0,0,0) \text { to }(2,12,0)
\end{aligned}
$$

- We parametrize the parabola by

$$
x=t, y=3 t^{2}, z=0 \text { for } 0 \leq t \leq 2
$$

- Then, by Definition 1.2

$$
\begin{aligned}
& \text { Work }=\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t \\
& =\int_{0}^{2}\left(t,-3 t^{2}, t+3 t^{2}\right) \cdot(1,6 t, 0) d t=\int_{0}^{2}\left(t-18 t^{3}\right) d t \\
& =\left.\left(\frac{1}{2} t^{2}-\frac{9}{2} t^{4}\right)\right|_{0} ^{2}=2-72=-70
\end{aligned}
$$

Example 11

- Consider the force

$$
\begin{aligned}
& \mathbf{F}=x \mathbf{i}-y \mathbf{j}+(x+y+z) \mathbf{k} \\
& \text { Along } y=3 x^{2}, z=0, \text { from }(0,0,0) \text { to }(2,12,0)
\end{aligned}
$$

- We parametrize the parabola by

$$
x=t, y=3 t^{2}, z=0 \text { for } 0 \leq t \leq 2
$$

- Then, by Definition 1.2

$$
\text { Work }=\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t=-70
$$

- The meaning of the negative sign is that by moving along the curve in the indicated direction, work is done against the force

Example 11

- Consider the force

$$
\begin{aligned}
& \mathbf{F}=x \mathbf{i}-y \mathbf{j}+(x+y+z) \mathbf{k} \\
& \text { Along } y=3 x^{2}, z=0, \text { from }(0,0,0) \text { to }(2,12,0)
\end{aligned}
$$

- We parametrize the parabola by

$$
x=t, y=3 t^{2}, z=0 \text { for } 0 \leq t \leq 2
$$

- Then, by Definition 1.2

$$
\text { Work }=\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t=-70
$$

- If we orient the curve the opposite way, then the work done in moving from $(2,12,0)$ to $(0,0,0)$ would be 70

Outline

(1) Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves
(2) Green's Theorem
- Definition
- Examples

Theorem 2.1: Green's Theorem

- Let D be a closed, bounded region in \mathbb{R}^{2}
- Assume its boundary $C=\partial D$ consists of finitely many simple, closed, piecewise C^{1} curves
- Orient the curves of C so that D is on the left as one traverses C

- If $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) j$ is a vector field of class C^{1} throughout D, then

$$
\oint_{C} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Theorem 2.1: Green's Theorem

- If $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) j$ is a vector field of class C^{1} throughout D, then

$$
\oint_{C} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

- The symbol \oint_{C} indicates that the line integral is taken over one or more closed curves
Green's Theorem relates the vector line integral around a closed curve C in \mathbb{R}^{2} to an appropriate double integral over the plane region D bounded by C

Examples

Outline

(1) Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves
(2) Green's Theorem
- Definition
- Examples

Example 1

- Let $\mathbf{F}=x y \mathbf{i}+y^{2} \mathbf{j}$ and let D be the first quadrant region bounded by the line $y=x$ and the parabola $y=x^{2}$

- ∂D is oriented counterclockwise, the orientation stipulated by the statement of Green's Theorem
- We can calculate

$$
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s}=\oint_{\partial D} x y d x+y^{2} d y
$$

Example 1

- Let $\mathbf{F}=x y \mathbf{i}+y^{2} \mathbf{j}$ and let D be the first quadrant region bounded by the line $y=x$ and the parabola $y=x^{2}$

- We need to parametrize the two C^{1} pieces of ∂D separately

$$
C_{1}:\left\{\begin{array}{l}
x=t \\
y=t^{2}
\end{array} \quad, 0 \leq t \leq 1 \text { and } C_{2}:\left\{\begin{array}{l}
x=1-t \\
y=1-t
\end{array} \quad, 0 \leq t \leq 1\right.\right.
$$

- Note the orientations of C_{1} and C_{2}

Example 1

$\mathbf{F}=x y \mathbf{i}+y^{2} \mathbf{j}, D$ be the first quadrant bounded by $y=x$ and $y=x^{2}$
$C_{1}:\left\{\begin{array}{l}x=t \\ y=t^{2}\end{array} \quad, 0 \leq t \leq 1\right.$ and $C_{2}:\left\{\begin{array}{l}x=1-t \\ y=1-t\end{array} \quad, 0 \leq t \leq 1\right.$

- Then

$$
\begin{aligned}
& \oint_{\partial D} x y d x+y^{2} d y=\oint_{C_{1}} x y d x+y^{2} d y+\oint_{C_{2}} x y d x+y^{2} d y \\
& =\int_{0}^{1}\left(t \cdot t^{2}+t^{4} \cdot 2 t\right) d t+\int_{0}^{1}\left((1-t)^{2}+(1-t)^{2}\right)(-d t) \\
& =\int_{0}^{1}\left(t^{3}+2 t^{5}\right) d t+\int_{0}^{1} 2(1-t)^{2}(-d t) \\
& =\left.\left(\frac{1}{4} t^{4}+\frac{2}{6} t^{6}\right)\right|_{0} ^{1}+\left.\left(\frac{2}{3}(1-t)^{3}\right)\right|_{0} ^{1}=\frac{1}{4}+\frac{2}{6}-\frac{2}{3}=-\frac{1}{12}
\end{aligned}
$$

Example 1

$\mathbf{F}=x y \mathbf{i}+y^{2} \mathbf{j}, D$ be the first quadrant bounded by $y=x$ and $y=x^{2}$
$C_{1}:\left\{\begin{array}{l}x=t \\ y=t^{2}\end{array} \quad, 0 \leq t \leq 1\right.$ and $C_{2}:\left\{\begin{array}{l}x=1-t \\ y=1-t\end{array} \quad, 0 \leq t \leq 1\right.$

- On the other hand

$$
\begin{aligned}
& \iint_{D}\left(\frac{\partial}{\partial x}\left(y^{2}\right)-\frac{\partial}{\partial y}(x y)\right) d x d y=\int_{0}^{1} \int_{x^{2}}^{x}-x d y d x \\
& =\int_{0}^{1}-x\left(x-x^{2}\right) d x=\int_{0}^{1}\left(x^{3}-x^{2}\right) d x=\left.\left(\frac{1}{4} x^{4}-\frac{1}{3} x^{3}\right)\right|_{0} ^{1} \\
& =\frac{1}{4}-\frac{1}{3}=-\frac{1}{12}
\end{aligned}
$$

- The line integral and the double integral agree

Example 2

- Let C be the circle of radius a, oriented counterclockwise
- Then, C is the boundary of the disk D of radius a

- We calculate the line integral

$$
\oint_{C}-y d x+x d y
$$

- Although we can parametrize C and thus evaluate the line integral, it is easier to employ Green's Theorem instead

Example 2

- Let C be the circle of radius a, oriented counterclockwise
- Then, C is the boundary of the disk D of radius a

- We calculate line integral

$$
\begin{aligned}
& \oint_{C}-y d x+x d y=\iint_{D}\left(\frac{\partial}{\partial x}(x)-\frac{\partial}{\partial y}(-y)\right) d x d y \\
& =\iint_{D} 2 d x d y=2(\text { Area of } D)=2 \pi a^{2}
\end{aligned}
$$

Generalization of Example 2

- Suppose D is any region to which Green's Theorem can be applied
- Then, orienting ∂D appropriately, we have

$$
\frac{1}{2} \oint_{\partial D}-y d x+x d y=\frac{1}{2} \iint_{D} 2 d x d y=\text { Area of } D
$$

- Thus, we can calculate the area of a region (two-dimensional) by using line integrals (one-dimensional)

Example 3

- We compute the area inside the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

- The ellipse itself may be parametrized counterclockwise by

$$
\left\{\begin{array}{l}
x=a \cos t \\
y=b \sin t
\end{array} \quad, 0 \leq t \leq 2 \pi\right.
$$

Example 3

- We compute the area inside the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad\left\{\begin{array}{l}
x=a \cos t \\
y=b \sin t
\end{array} \quad, 0 \leq t \leq 2 \pi\right.
$$

- Then

$$
\begin{aligned}
& \text { Area of ellipse }=\frac{1}{2} \oint_{\partial D}-y d x+x d y \\
& =\frac{1}{2} \int_{0}^{2 \pi}-b \sin t(-a \sin t d t)+a \cos t(b \cos t d t) \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(a b \sin ^{2} t+a b \cos ^{2} t\right) d t=\frac{1}{2} \int_{0}^{2 \pi} a b d t=\pi a b
\end{aligned}
$$

