Métodos Matemáticos de Bioingeniería

Grado en Ingeniería Biomédica Lecture 20

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones Área de Estadística e Investigación Operativa Universidad Rey Juan Carlos

10 de mayo de 2021

Outline

1 Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves

2 Green's Theorem

- Definition
- Examples

Green's Theorem

Scalar line integral

1 Scalar and Vector Line Integrals

Scalar line integral

- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves

2 Green's Theorem

- Definition
- Examples

Scalar Line Integral as a limit of a Riemann sum

- Let $\mathbf{x}: [a,b]
 ightarrow \mathbb{R}^3$ be a path of class C^1
- Let $f: X \subseteq \mathbb{R}^3 \to \mathbb{R}$ be a continuous function
- Suppose that domain X contains the image of x, so that the composite f(x(t)) is defined
- As with every other integral, the scalar line integral is a limit of appropriate Riemann sums
- Consider a partition of [a, b]

а

$$= t_0 < t_1 < \cdots < t_k < \cdots < t_n = b$$

$$\mathbf{x}(t_k) \cdots \mathbf{x}(b)$$

$$\mathbf{x}(t_{k-1})$$

$$\mathbf{x}(a)$$

$$\mathbf{x}(t_1) \cdots \Delta s_k = \text{arclength}$$
of segment

Scalar Line Integral as a limit of a Riemann sum

$$a = t_0 < t_1 < \cdots < t_k < \cdots < t_n = b$$

- Let us think of
 - The image of the path **x** as representing an idealized wire in space
 - $f(\mathbf{x}(t))$ as the electrical charge density of the wire
- Then, the Riemann sum approximates the total charge of the wire

$$\text{Fotal charge} = \lim_{\mathsf{all } \mathbf{\Delta t_k} \to 0} \sum_{k=1} f(\mathbf{x}(t_k^*)) \Delta s_k$$

Definition 1.1: Scalar Line Integral

• The scalar line integral of f along the C^1 path \mathbf{x} is

$$\int_{a}^{b} f(\mathbf{x}(t)) \|\mathbf{x}'(t)\| dt$$

• We denote this integral

$$\int_{x} f ds$$

Remarks

 The line integral represents a sum of values of f along x, times "infinitesimal" pieces of arclength of x

Remarks

• Definition 1.1 can be made for arbitrary *n*, that is, for functions *f* defined on domains in \mathbb{R}^n for arbitrary *n*

Remarks

- We can still define the scalar line integral if
 - **x** is not of class C^1 , but only "piecewise" C^1
 - $f(\mathbf{x}(t))$ is only piecewise continuous

Example 1

• Let
$$f(x,y,z) = xy + z$$
 and $\mathbf{x} : [0,2\pi] \to \mathbb{R}^3$ be the helix

$$\mathbf{x}(t) = (\cos t, \sin t, t)$$

• We compute

$$\int_{\mathbf{x}} f \, ds = \int_0^{2\pi} f(\mathbf{x}(t)) \|\mathbf{x}'(t)\| dt$$

• First, from the double-angle formula

$$f(\mathbf{x}(t)) = \cos t \sin t + t = \frac{1}{2} \sin 2t + t$$

$$\mathbf{x}'(t) = (-\sin t, \cos t, 1)$$

$$\|\mathbf{x}'(t)\| = \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2}$$

 $\sqrt{2}$

Scalar line integral

f

Example 1

$$\begin{aligned} f(x, y, z) &= xy + z \quad \text{and} \quad \mathbf{x}(t) = (\cos t, \sin t, t) \\ f(\mathbf{x}(t)) &= \cos t \sin t + t = \frac{1}{2} \sin 2t + t \\ \mathbf{x}'(t) &= (-\sin t, \cos t, 1), \quad \|\mathbf{x}'(t)\| = \sqrt{\sin^2 t + \cos^2 t + 1} = 0 \end{aligned}$$

• Thus

$$\begin{aligned} \int_{\mathbf{x}} f \, ds &= \int_{0}^{2\pi} f(\mathbf{x}(t)) \|\mathbf{x}'(t)\| dt = \int_{0}^{2\pi} \left(\frac{1}{2}\sin 2t + t\right) \sqrt{2} \, dt \\ &= \sqrt{2} \int_{0}^{2\pi} \left(\frac{1}{2}\sin 2t + t\right) dt = \sqrt{2} \left(-\frac{1}{4}\cos 2t + \frac{1}{2}t^{2}\right) \Big|_{0}^{2\pi} \\ &= \sqrt{2} \left(\left(-\frac{1}{4} + 2\pi^{2}\right) - \left(-\frac{1}{4} + 0\right)\right) = 2\sqrt{2}\pi^{2} \end{aligned}$$

Example 2

• Let
$$f(x,y) = y - x$$
 and let $\mathbf{x} : [0,3] \to \mathbb{R}^2$ be the planar path

$$\mathbf{x}(t) = egin{cases} (2t,t) & ext{if } 0 \leq t \leq 1 \ (t+1,5-4t) & ext{if } 1 < t \leq 3 \end{cases}$$

- Hence, **x** is piecewise C^1 path
- The two path segments defined for t in [0,1] and for t in [1,3] are each of class C^1

Example 2

• Let
$$f(x,y) = y - x$$
 and let $\mathbf{x} : [0,3] \to \mathbb{R}^2$ be the planar path

$$\mathbf{x}(t) = egin{cases} (2t,t) & ext{if } 0 \leq t \leq 1 \ (t+1,5-4t) & ext{if } 1 < t \leq 3 \end{cases}$$

• Thus

$$\int_{\mathbf{x}} f \, ds = \int_{\mathbf{x}_1} f \, ds + \int_{\mathbf{x}_2} f \, ds$$

Example 2

• Let
$$f(x, y) = y - x$$
 and let $\mathbf{x} : [0, 3] \to \mathbb{R}^2$ be the planar path
 $\mathbf{x}(t) = \begin{cases} (2t, t) & \text{if } 0 \le t \le 1\\ (t+1, 5-4t) & \text{if } 1 < t \le 3 \end{cases}$

• Thus

$$\int_{\mathbf{x}} f \, ds = \int_{\mathbf{x}_1} f \, ds + \int_{\mathbf{x}_2} f \, ds$$

where

•
$$\mathbf{x_1}(t) = (2t, t)$$
 for $0 \le t \le 1$
• $\mathbf{x_2}(t) = (t + 1, 5 - 4t)$ for $1 < t \le 3$

• It is easy to see that

$$\|\mathbf{x_1}'(t)\| = \sqrt{5}$$
 and $\|\mathbf{x_2}'(t)\| = \sqrt{17}$

Example 2

• Let f(x,y) = y - x and let $\mathbf{x} : [0,3] \to \mathbb{R}^2$ be the planar path

$$\mathbf{x}(t) = \begin{cases} (2t, t) & \text{if } 0 \le t \le 1\\ (t+1, 5-4t) & \text{if } 1 < t \le 3 \end{cases}$$
$$\|\mathbf{x_1}'(t)\| = \sqrt{5} \text{ and } \|\mathbf{x_2}'(t)\| = \sqrt{17}$$

Thus

$$\begin{split} &\int_{\mathbf{x}_1} f \ ds = \int_0^1 f(\mathbf{x}_1(t)) \|\mathbf{x}_1'(t)\| dt = \int_0^1 (t-2t) \cdot \sqrt{5} \ dt = -\frac{\sqrt{5}}{2} t^2 \Big|_0^1 = -\frac{\sqrt{5}}{2} \\ &\int_{\mathbf{x}_2} f \ ds = \int_1^3 f(\mathbf{x}_2(t)) \|\mathbf{x}_2'(t)\| dt = \int_1^3 \left((5-4t) - (t+1) \right) \cdot \sqrt{17} dt \\ &= \sqrt{17} \left(4t - \frac{5}{2} t^2 \right) \Big|_1^3 = -12\sqrt{17} \end{split}$$

Geometric Interpretation of Scalar Line Integrals

• Let
$$f(x,y) = 2 + x^2y$$
 and let $\mathbf{x} : [0,\pi] \to \mathbb{R}^2$ be the planar path

$$\mathbf{x}(t) = (\cos t, \sin t), \ \ 0 \le t \le \pi$$

Then

 $f(\mathbf{x}(t)) = f(x(t), y(t)) = 2 + \cos^2 t \sin t$

- The line integral of f along x is the area of the "fence" whose
 - Path is governed by **x**
 - Height is governed by f

Green's Theorem

Vector line integral

Outline

1 Scalar and Vector Line Integrals

Scalar line integral

Vector line integral

- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves

2 Green's Theorem

- Definition
- Examples

Definition 1.2

- Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a path of class C^1
- Let $\mathbf{F}: X \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a vector field
- Suppose that X contains the image of x and assume that F varies continuously along x
- The vector line integral of **F** along $\mathbf{x} : [a, b] \to \mathbb{R}^n$, is

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$$

Remarks

- As with scalar line integrals, we may define the vector line integrals when x is a piecewise C¹ path
- We juste need to break up the integral in a suitable manner

Example 3

Let **F** be the radial vector field on
$$\mathbb{R}^3$$
 given by
 $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$
Let $\mathbf{x} : [0, 1] \to \mathbb{R}^3$ be the path
 $\mathbf{x}(t) = (t, 3t^2, 2t^3)$
Then
 $\mathbf{x}'(t) = (1, 6t, 6t^2)$
 $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_a^b \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$
 $= \int_0^1 (t\mathbf{i} + 3t^2\mathbf{j} + 2t^3\mathbf{k}) \cdot (\mathbf{i} + 6t\mathbf{j} + 6t^2\mathbf{k}) dt$
 $= \int_0^1 (t + 18t^3 + 12t^5) dt = \left(\frac{1}{2}t^2 + \frac{9}{2}t^4 + 2t^6\right)\Big|_0^1$

= 7

Physical Interpretation of Vector Line Integrals

- Consider **F** to be a force field in space
- Then, the vector line integral could represent the work done by **F** on a particle as the particle moves along the path **x**

Total Work
$$= \int_a^b \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$$

Simplified example

 \bullet Suppose F is a constant vector field and x is a straight-line

Physical Interpretation of Vector Line Integrals

- Consider **F** to be a force field in space
- Then, the vector line integral could represent the work done by **F** on a particle as the particle moves along the path **x**

Total Work =
$$\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$$

Simplified example

- Suppose \mathbf{F} is a constant vector field and \mathbf{x} is a straight-line
- Then, the work done by **F** in moving a particle from one point *A* along **x** to another point *B* is given by

Work =
$$\mathbf{F} \cdot \Delta \mathbf{s} = \mathbf{F} \cdot (B - A)$$

Differential Geometry Interpretation

- Suppose $\mathbf{x} : [a, b] \to \mathbb{R}^n$ is a C^1 path with $\mathbf{x}'(t) \neq \mathbf{0}$ for $a \leq t \leq b$
- Recall that we define the unit tangent vector **T** to **x** by normalizing the velocity

$$\mathbf{T} = rac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|}$$

Then

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$$
$$= \int_{a}^{b} \left(\mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{T}(t) \right) \|\mathbf{x}'(t)\| dt = \int_{\mathbf{x}} \left(\mathbf{F} \cdot \mathbf{T} \right) ds$$

Differential Geometry Interpretation

• Suppose $\mathbf{x}: [a,b] \to \mathbb{R}^n$ is a C^1 path with $\mathbf{x}'(t) \neq \mathbf{0}$ for $a \leq t \leq b$

• Then

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = = \int_{\mathbf{x}} (\mathbf{F} \cdot \mathbf{T}) \, ds$$

- Since the dot product F · T is a scalar quantity, we have written the original vector line integral as a scalar line integral
- It represents the (scalar) line integral of the tangential component of **F** along the path

Differential Geometry Interpretation

• Suppose $\mathbf{x} : [a, b] \to \mathbb{R}^n$ is a C^1 path with $\mathbf{x}'(t) \neq \mathbf{0}$ for $a \leq t \leq b$

Then

Example 4

• The circle
$$x^2 + y^2 = 9$$
 may be parametrized by

$$\begin{cases} x = 3\cos t \\ y = 3\sin t \end{cases}, 0 \le t \le 2\pi$$

• Hence, a unit tangent vector is

$$\mathbf{T} = \frac{-3\sin t\mathbf{i} + 3\cos t\mathbf{j}}{\sqrt{9\sin^2 t + 9\cos^2 t}} = -\sin t\mathbf{i} + \cos t\mathbf{j} = \frac{-y\mathbf{i} + x\mathbf{j}}{3}$$

- Now consider the radial vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$ on \mathbb{R}^2
- At every point along the circle we have

$$\mathbf{F} \cdot \mathbf{T} = (x\mathbf{i} + y\mathbf{j}) \cdot \left(\frac{-y\mathbf{i} + x\mathbf{j}}{3}\right) = 0$$

Example 4

$$\begin{cases} x = 3\cos t \\ y = 3\sin t \end{cases}, 0 \le t \le 2\pi, \mathbf{T} = \frac{-y\mathbf{i} + x\mathbf{j}}{3} \text{ and } \mathbf{F} = x\mathbf{i} + y\mathbf{j} \Rightarrow \mathbf{F} \cdot \mathbf{T} = 0 \end{cases}$$

• Thus, F is always perpendicular to the curve, and

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} (\mathbf{F} \cdot \mathbf{T}) \, ds = \int_{\mathbf{x}} 0 \, ds = 0$$

Considering **F** as a force, no work is done

Outline

1 Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral

• Differential form of the line integral

- Effect of reparametrization
- Closed and simples curves

2 Green's Theorem

- Definition
- Examples

Differential Form of the Line Integral

- Suppose that $\mathbf{x}(t) = (x(t), y(t), z(t)), a \leq t \leq b$, is a C^1 path
- Consider a continuous vector field F written as

$$\mathbf{F}(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$$

• Then, from Definition 1.2 of the vector line integral, we have

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \left(M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k} \right)$$

$$\cdot \quad (x'(t)\mathbf{i} + y'(t)\mathbf{j} + z'(t)\mathbf{k}) dt$$

$$= \int_{a}^{b} \left(M(x, y, z)x'(t) + N(x, y, z)y'(t) + P(x, y, z)z'(t) \right) dt$$

Recall that $dx = x'(t)dt, dy = y'(t)dt, dz = z'(t)dt$

$$= \int_{\mathbf{x}} M(x, y, z)dx + N(x, y, z)dy + P(x, y, z)dz$$

Differential Form of the Line Integral

- Suppose that $\mathbf{x}(t) = (x(t), y(t), z(t)), a \leq t \leq b$, is a C^1 path
- Consider a continuous vector field F written as

$$\mathbf{F}(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$$

• Then, from Definition 1.2 of the vector line integral, we have

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} M(x, y, z) dx + N(x, y, z) dy + P(x, y, z) dz$$

• A notational alternative is

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} M \, dx + N \, dy + P \, dz$$

The **differential form** of the line integral

Differential Form of the Line Integral

• Suppose that $\mathbf{x}(t) = (x(t), y(t), z(t)), a \leq t \leq b$, is a C^1 path

• Consider a continuous vector field F written as

$$\mathsf{F}(x,y,z) = M(x,y,z)\mathbf{i} + N(x,y,z)\mathbf{j} + P(x,y,z)\mathbf{k}$$

• Then, from Definition 1.2 of the vector line integral, we have

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} M(x, y, z) dx + N(x, y, z) dy + P(x, y, z) dz$$

• A alternative notation is

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} M \, dx + N \, dy + P \, dz$$

- M dx + N dy + P dz is itself called a differential form
- M dx + N dy + P dz should be evaluated using the parametric equations for x, y, and z

Example 5

- Let ${\bf x}$ be the path ${\bf x}(t)=(t,t^2,t^3)$ for $0\leq t\leq 1$
- We compute

$$\int_{\mathbf{x}} (y+z) \, dx + (x+z) \, dy + (x+y) \, dz$$

• Along the path, we have

$$x = t \Rightarrow dx = dt, y = t^2 \Rightarrow dy = 2tdt, z = t^3 \Rightarrow dz = 3t^2dt$$

• Therefore

$$\int_{\mathbf{x}} (y+z) \, dx + (x+z) \, dy + (x+y) \, dz$$

= $\int_{0}^{1} (t^{2}+t^{3}) dt + (t+t^{3}) 2t dt + (t+t^{2}) 3t^{2} dt$
= $\int_{0}^{1} (5t^{4}+4t^{3}+3t^{2}) \, dt = (t^{5}+t^{4}+t^{3}) \big|_{0}^{1} = 3$

Outline

1 Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral

• Effect of reparametrization

• Closed and simples curves

2 Green's Theorem

- Definition
- Examples

The Effect of Reparametrization

• The unit tangent vector to a path depends on the geometry of the underlying curve

It doesn't depend on the particular parametrization

- We might expect the line integral likewise to depend only on the image curve
- For example, consider the following two paths in the plane

$$\begin{aligned} \mathbf{x} &: [0, 2\pi] \to \mathbb{R}^2, \quad \mathbf{x}(t) = (\cos t, \sin t) \\ \mathbf{y} &: [0, \pi] \to \mathbb{R}^2, \quad \mathbf{y}(t) = (\cos 2t, \sin 2t) \end{aligned}$$

- Both x and y trace out a circle once in a counterclockwise sense
- If we let u(t) = 2t, then we see that $\mathbf{y}(t) = \mathbf{x}(u(t))$

Definition 1.3

- Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a piecewise C^1 path
- Consider another C^1 path $\mathbf{y}:[c,d]
 ightarrow \mathbb{R}^n$
- We say that y is a reparametrization of x if there is a one-one and onto function u : [c, d] → [a, b] of class C¹
 - With inverse $u^{-1}:[a,b]
 ightarrow [c,d]$ that is also of class C^1
 - Such that $\mathbf{y}(t) = \mathbf{x}(u(t))$, that is, $\mathbf{y} = \mathbf{x} \circ u$

Remark

• Thus, any reparametrization of a path must have the same underlying image curve as the original path

Consider the path

$$\mathbf{x}(t) = (1+2t, 2-t, 3+5t), \quad 0 \le t \le 1$$

- It traces the line segment from the point (1,2,3) to the point (3,1,8)
- 1. So does the path

$$\mathbf{y}(t) = (1+2t^2, 2-t^2, 3+5t^2), \quad 0 \leq t \leq 1$$

• We have that **y** is a reparametrization of **x** via the change of variable

$$u(t)=t^2$$

• Consider the path

$$\mathbf{x}(t) = (1+2t, 2-t, 3+5t), \quad 0 \le t \le 1$$

- It traces the line segment from the point (1,2,3) to the point (3,1,8)
- 2. We consider now the path $\boldsymbol{z}:[-1,1]\to\mathbb{R}^3$

$$\mathbf{z}(t) = (1 + 2t^2, 2 - t^2, 3 + 5t^2), \quad -1 \le t \le 1$$

- It is not a reparametrization of x
- We also have $\mathbf{z}(t) = \mathbf{x}(u(t))$, where $u(t) = t^2$
- But in this case *u* maps [-1,1] onto [0,1] in a way that is not one-one

Example 6

• Consider the path

$$\mathbf{x}(t) = (1+2t, 2-t, 3+5t), \quad 0 \le t \le 1$$

- It traces the line segment from the point (1,2,3) to the point (3,1,8)
- 3. We finally consider the path $\boldsymbol{w}:[0,1]\rightarrow \mathbb{R}^3$

$$w(t) = (3 - 2t, 1 + t, 8 - 5t), \quad 0 \le t \le 1$$

- It is a reparametrization of **x**
- We have $\mathbf{w}(t) = \mathbf{x}(1-t)$
- So the function $u: [0,1] \rightarrow [0,1]$ given by u(t) = 1 t provides the change of variable for the reparametrization.

Geometrically, w traces the line segment between (1,2,3) and (3,1,8) in the opposite direction to x

Reparametrization and Orientation

- Let y : [c, d] → ℝⁿ be a reparametrization of x : [a, b] → ℝⁿ via the change of variable u : [c, d] → [a, b]
- Then, since *u* is one-one, onto, and continuous, we must have either

1.
$$u(c) = a$$
 and $u(d) = b$, or

2.
$$u(c) = b$$
 and $u(d) = a$

• In case 1, we say that **y** (or *u*) is orientation-preserving

y traces out the same image curve in the same direction that x does

• In case 2, we say that **y** (or *u*) is orientation-reversing

 ${\bf y}$ traces out the same image curve in the opposite direction that ${\bf x}$ does

Example 7

- Let $\mathbf{x}: [a,b]
 ightarrow \mathbb{R}^n$ be any C^1 path
- Then, we may define the opposite path $\mathbf{x}_{opp}: [a,b]
 ightarrow \mathbb{R}^n$ by

• That is, $\mathbf{x}_{opp}(t) = \mathbf{x}(u(t))$, where u: [a, b]
ightarrow [a, b] is given by

$$u(t) = a + b - t$$

 Clearly, then, x_{opp}(t) is an orientation-reversing reparametrization of x

Reparametrization and Velocity

In addition to reversing orientation, a reparametrization of a path can change the speed

• This follows readily from the chain rule

Speed of $\mathbf{y} = \|\mathbf{y}'(t)\| = |u'(t)|\|\mathbf{x}'(t)\| = |u'(t)| \cdot \text{ (Speed of } \mathbf{x}\text{)}$

• Since u is one-one, it follows that either

•
$$u'(t) \ge 0$$
 for all $t \in [a, b]$ or

- $u'(t) \leq 0$ for all $t \in [a, b]$
- The first case occurs when y is orientation-preserving
- The second case occurs when **y** is orientation-reversing

Theorem 1.4

- Let $\mathbf{x}: [a, b] \to \mathbb{R}^n$ be a piecewise C^1 path
- Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be a continuous function whose domain X contains the image of **x**
- If $\mathbf{y}: [c,d]
 ightarrow \mathbb{R}^n$ is any reparametrization of \mathbf{x} , then

$$\int_{\mathbf{y}} f \, ds = \int_{\mathbf{x}} f \, ds$$

Remark

• Theorems 1.4 tell us that scalar line integrals are independent of the way we might choose to reparametrize a path

Theorem 1.5

- Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a piecewise C^1 path
- Let $\mathbf{F}: X \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a continuous vector field whose domain X contains the image of \mathbf{x}
- If $\mathbf{y}: [c,d]
 ightarrow \mathbb{R}^n$ is any reparametrization of \mathbf{x} , then
 - $1. \ \mbox{If} \ {\bf y}$ is orientation-preserving, then

$$\int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$$

2. If \mathbf{y} is orientation-reversing, then

$$\int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} = -\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$$

Theorem 1.5

- Let $\mathbf{x}: [a, b] \to \mathbb{R}^n$ be a piecewise C^1 path
- Let F: X ⊆ ℝⁿ → ℝⁿ be a continuous vector field whose domain X contains the image of x
- If $\mathbf{y}: [c,d] \to \mathbb{R}^n$ is any reparametrization of \mathbf{x} , then

$$\int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} \quad \text{or} \quad \int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} = -\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$$

Remark

- Theorems 1.5 tell us that vector line integrals are independent of reparametrization up to a sign
- This sign depends only on whether the reparametrization preserves or reverses orientation

Example 8

- Let $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$, and consider the following three paths between (0,0) and (1,1)
 - $\begin{array}{lll} {\bf x}(t) & = & (t,t), & 0 \leq t \leq 1 \\ {\bf y}(t) & = & (2t,2t), & 0 \leq t \leq \frac{1}{2} \\ {\bf z}(t) & = & (1-t,1-t), & 0 \leq t \leq 1 \end{array}$
- The three paths are all reparametrizations of one another
- \mathbf{x}, \mathbf{y} , and \mathbf{z} all trace the line segment between (0, 0) and (1, 1)
 - \boldsymbol{x} and \boldsymbol{y} from (0,0) to (1,1), and
 - z from (1,1) to (0,0)
- We can compare the values of the line integrals of **F** along these paths
- The results of these calculations must agree with what Theorem 1.5 predicts

• Let $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$, and consider the following three paths between (0,0) and (1,1) $\mathbf{x}(t) = (t, t),$ 0 < t < 1 $0 \le t \le \frac{1}{2}$ $\mathbf{y}(t) = (2t, 2t),$ $z(t) = (1-t, 1-t), \quad 0 < t < 1$ $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{1} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt = \int_{0}^{1} (t\mathbf{i} + t\mathbf{j}) \cdot (\mathbf{i} + \mathbf{j}) dt$ $= \int_{0}^{1} 2t \, dt = t^{2} \Big|_{0}^{1} = 1$

 Let F = xi + yj, and consider the following three paths between (0,0) and (1,1) 			
	$\mathbf{x}(t) = (t,t),$	$0 \le t \le 1$	
	$\mathbf{y}(t) = (2t, 2t),$	$0 \le t \le rac{1}{2}$	
	z(t) = (1-t, 1-t),	$0 \le t \le 1$	
$\int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} =$	$\int_{0}^{\frac{1}{2}} \mathbf{F}(\mathbf{y}(t)) \cdot \mathbf{y}'(t) dt = \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} 8t \ dt = 4t^{2} \big _{0}^{\frac{1}{2}} = 1$	$\frac{1}{2}(2t\mathbf{i}+2t\mathbf{j})\cdot(2\mathbf{i}+2\mathbf{j})dt$	

٩	Let $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$, and consider the following three pa	ths
	between $(0,0)$ and $(1,1)$	

$$\begin{aligned} \mathbf{x}(t) &= (t,t), & 0 \le t \le 1\\ \mathbf{y}(t) &= (2t,2t), & 0 \le t \le \frac{1}{2}\\ \mathbf{z}(t) &= (1-t,1-t), & 0 \le t \le 1 \end{aligned}$$
$$\begin{aligned} \int_{\mathbf{z}} \mathbf{F} \cdot d\mathbf{s} &= \int_{0}^{1} \mathbf{F}(\mathbf{z}(t)) \cdot \mathbf{z}'(t) dt\\ &= \int_{0}^{1} \left((1-t)\mathbf{i} + (1-t)\mathbf{j} \right) \cdot (-\mathbf{i} - \mathbf{j}) dt\\ &= \int_{0}^{1} 2(t-1) dt = (t-1)^{2} \big|_{0}^{1} = -1 \end{aligned}$$

Green's Theorem

Outline

1 Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves

2 Green's Theorem

- Definition
- Examples

Closed and Simple Curves

- Theorems 1.4 and 1.5 enable us to define line integrals over curves rather than over parametrized paths
- To be more explicit, we say that a piecewise C¹ path
 x: [a, b] → ℝⁿ is closed if x(a) = x(b)
- We say that the path \mathbf{x} is simple if it has no self-intersections

That is, if **x** is one-one on [a, b], except possibly that $\mathbf{x}(a)$ may equal $\mathbf{x}(b)$

• Then, by a curve C, we now mean the image of a path $\mathbf{x} : [a, b] \to \mathbb{R}^n$

This path is one-one except possibly at finitely many points of [a, b]

• The (nearly) one-one path **x** will be called a parametrization of *C*

Example 9

• Consider the ellipse

• It is a simple, closed curve that may be parametrized by either $\mathbf{x}(t) = (5 \cos t, 3 \sin t), \quad \mathbf{x} : [0, 2\pi] \to \mathbb{R}^2$ or $\mathbf{y}(t) = (5 \cos 2(\pi - t), 3 \sin 2(\pi - t)), \quad \mathbf{y} : [0, \pi] \to \mathbb{R}^2$

Example 9

• Consider the ellipse

• Consider now the path

 $\mathbf{z}(t) = (5\cos t, 3\sin t), \quad \mathbf{z}: [0, 6\pi] \rightarrow \mathbb{R}^2$

 It is not a parametrization, since it traces the ellipse three times as t increases from 0 to 6π. z is not one-one.

Green's Theorem

Example 10

- Let C be the upper semicircle of radius 2, centered at (0,0) and oriented counterclockwise from (2,0) to (-2,0)
- We calculate

$$\int_C (x^2 - y^2 + 1) ds$$

• We can choose any parametrization for C, for instance,

• Note that
$$\mathbf{y}(t) = \mathbf{x}(2t + \pi)$$

Example 10

- Let C be the upper semicircle of radius 2, centered at (0,0) and oriented counterclockwise from (2,0) to (-2,0)
- We calculate

$$\int_C (x^2 - y^2 + 1) ds$$

$$\mathbf{x}(t) = (2\cos t, 2\sin t), \quad 0 \le t \le \pi$$

• Then

$$\int_{C} (x^{2} - y^{2} + 1)ds = \int_{x} (x^{2} - y^{2} + 1)ds$$

= $\int_{0}^{\pi} (4\cos^{2} t - 4\sin^{2} t + 1)\sqrt{4\sin^{2} t + 4\cos^{2} t} dt$
By the double-angle formula $\cos(2t) = \cos^{2} t - \sin^{2} t$
= $\int_{0}^{\pi} (4\cos 2t + 1)2 dt = 2(\sin 2t + t)|_{0}^{\pi} = 2\pi$

Example 10

- Let C be the upper semicircle of radius 2, centered at (0,0) and oriented counterclockwise from (2,0) to (-2,0)
- We calculate $\int_{C} (x^2 - y^2 + 1) ds$ $\mathbf{y}(t) = (-2\cos 2t, -2\sin 2t), \quad -\frac{\pi}{2} \le t \le 0$ • Then $\int_{C} (x^2 - y^2 + 1) ds = \int_{V} (x^2 - y^2 + 1) ds$ $= \int_{-\infty}^{0} (4\cos^2 2t - 4\sin^2 2t + 1) \sqrt{16\sin^2 2t + 16\cos^2 2t} dt$ By the double-angle formula $= \int_{-\pi/2}^{0} (4\cos 4t + 1) 4 \, dt = 4 \, (\sin 4t + t) \big|_{-\pi/2}^{0} = 2\pi$

Example 11

• Consider the force

$$\mathbf{F} = x\mathbf{i} - y\mathbf{j} + (x + y + z)\mathbf{k}$$

- We calculate the work done by the force *F* on a particle that moves
 - Along the parabola $y = 3x^2$, z = 0
 - From the origin to the point (2, 12, 0)

Example 11

• Consider the force

$$\mathbf{F} = x\mathbf{i} - y\mathbf{j} + (x + y + z)\mathbf{k}$$

Along $y = 3x^2$, $z = 0$, from (0,0,0) to (2,12,0)

• We parametrize the parabola by

$$x = t, y = 3t^2, z = 0$$
 for $0 \le t \le 2$

• Then, by Definition 1.2

Work =
$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{2} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$$

= $\int_{0}^{2} (t, -3t^{2}, t + 3t^{2}) \cdot (1, 6t, 0) dt = \int_{0}^{2} (t - 18t^{3}) dt$
= $\left(\frac{1}{2}t^{2} - \frac{9}{2}t^{4}\right)\Big|_{0}^{2} = 2 - 72 = -70$

• Consider the force

$$\mathbf{F} = x\mathbf{i} - y\mathbf{j} + (x + y + z)\mathbf{k}$$

Along $y = 3x^2$, $z = 0$, from (0,0,0) to (2,12,0)

• We parametrize the parabola by

$$x = t, y = 3t^2, z = 0$$
 for $0 \le t \le 2$

• Then, by Definition 1.2

Work =
$$\int_C \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_0^2 \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt = -70$$

• The meaning of the negative sign is that by moving along the curve in the indicated direction, work is done against the force

• Consider the force

$$\mathbf{F} = x\mathbf{i} - y\mathbf{j} + (x + y + z)\mathbf{k}$$

Along $y = 3x^2$, $z = 0$, from (0,0,0) to (2,12,0)

• We parametrize the parabola by

$$x = t, y = 3t^2, z = 0$$
 for $0 \le t \le 2$

• Then, by Definition 1.2

Work =
$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{2} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt = -70$$

• If we orient the curve the opposite way, then the work done in moving from (2, 12, 0) to (0, 0, 0) would be 70

Scalar and Vector Line Integrals

Green's Theorem

Definition

Outline

1 Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves

• Examples

Definition

Theorem 2.1: Green's Theorem

- \bullet Let D be a closed, bounded region in \mathbb{R}^2
- Assume its boundary $C = \partial D$ consists of finitely many simple, closed, piecewise C^1 curves
- Orient the curves of C so that D is on the left as one traverses C $C = \partial D$

If F(x,y) = M(x,y)i + N(x,y)j is a vector field of class C¹ throughout D, then

$$\oint_{C} M dx + N dy = \int \int_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Scalar and Vector Line Integrals

Definition

Theorem 2.1: Green's Theorem

 If F(x, y) = M(x, y)i + N(x, y)j is a vector field of class C¹ throughout D, then

$$\oint_{C} M dx + N dy = \int \int_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

• The symbol \oint_C indicates that the line integral is taken over one or more closed curves

Green's Theorem relates the vector line integral around a closed curve C in \mathbb{R}^2 to an appropriate double integral over the plane region D bounded by C

Scalar and Vector Line Integrals

Green's Theorem

Examples

Outline

1 Scalar and Vector Line Integrals

- Scalar line integral
- Vector line integral
- Differential form of the line integral
- Effect of reparametrization
- Closed and simples curves

Examples

Example 1

Let F = xyi + y²j and let D be the first quadrant region bounded by the line y = x and the parabola y = x²

- ∂D is oriented counterclockwise, the orientation stipulated by the statement of Green's Theorem
- We can calculate

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \oint_{\partial D} xy \ dx + y^2 \ dy$$

Example 1

Let F = xyi + y²j and let D be the first quadrant region bounded by the line y = x and the parabola y = x²

 $y \qquad (1,1)$ $C_2 \qquad D \qquad C_1$ $y = x^2$ x

• We need to parametrize the two C^1 pieces of ∂D separately

$$\mathcal{C}_1: egin{cases} x=t \ y=t^2 \end{cases}, 0\leq t\leq 1 ext{ and } \mathcal{C}_2: egin{cases} x=1-t \ y=1-t \end{cases}, 0\leq t\leq 1 \ \end{pmatrix}$$

• Note the orientations of C₁ and C₂

Example 1

$$\begin{split} \mathbf{F} &= xy\mathbf{i} + y^2\mathbf{j}, \ D \text{ be the first quadrant bounded by } y = x \text{ and } y = x^2\\ \mathcal{C}_1 : \begin{cases} x = t \\ y = t^2 \end{cases}, \ 0 \leq t \leq 1 \text{ and } \mathcal{C}_2 : \begin{cases} x = 1 - t \\ y = 1 - t \end{cases}, \ 0 \leq t \leq 1 \end{cases} \end{split}$$

• Then

$$\begin{split} \oint_{\partial D} xy \ dx + y^2 \ dy &= \oint_{C_1} xy \ dx + y^2 \ dy + \oint_{C_2} xy \ dx + y^2 \ dy \\ &= \int_0^1 \left(t \cdot t^2 + t^4 \cdot 2t \right) \ dt + \int_0^1 \left((1-t)^2 + (1-t)^2 \right) (-dt) \\ &= \int_0^1 \left(t^3 + 2t^5 \right) \ dt + \int_0^1 2(1-t)^2 (-dt) \\ &= \left(\frac{1}{4}t^4 + \frac{2}{6}t^6 \right) \Big|_0^1 + \left(\frac{2}{3}(1-t)^3 \right) \Big|_0^1 = \frac{1}{4} + \frac{2}{6} - \frac{2}{3} = -\frac{1}{12} \end{split}$$

Example 1

$$\begin{split} \mathbf{F} &= xy\mathbf{i} + y^2\mathbf{j}, \ D \text{ be the first quadrant bounded by } y = x \text{ and } y = x^2\\ C_1 &: \begin{cases} x = t \\ y = t^2 \end{cases}, 0 \leq t \leq 1 \text{ and } C_2 &: \begin{cases} x = 1 - t \\ y = 1 - t \end{cases}, 0 \leq t \leq 1 \end{cases} \end{split}$$

• On the other hand

$$\int \int_{D} \left(\frac{\partial}{\partial x} \left(y^2 \right) - \frac{\partial}{\partial y} (xy) \right) dx dy = \int_{0}^{1} \int_{x^2}^{x} - x \, dy \, dx$$
$$= \int_{0}^{1} - x \left(x - x^2 \right) \, dx = \int_{0}^{1} \left(x^3 - x^2 \right) \, dx = \left(\frac{1}{4} x^4 - \frac{1}{3} x^3 \right) \Big|_{0}^{1}$$
$$= \frac{1}{4} - \frac{1}{3} = -\frac{1}{12}$$

• The line integral and the double integral agree

Example 2

- Let C be the circle of radius a, oriented counterclockwise
- Then, C is the boundary of the disk D of radius a

• We calculate the line integral

$$\oint_C -y \, dx + x \, dy$$

• Although we can parametrize C and thus evaluate the line integral, it is easier to employ Green's Theorem instead

Example 2

- Let C be the circle of radius a, oriented counterclockwise
- Then, C is the boundary of the disk D of radius a

• We calculate line integral

$$\oint_C -y \, dx + x \, dy = \int \int_D \left(\frac{\partial}{\partial x} (x) - \frac{\partial}{\partial y} (-y) \right) dx \, dy$$
$$= \int \int_D 2 \, dx \, dy = 2 (\text{Area of } D) = 2\pi a^2$$

Generalization of Example 2

- Suppose *D* is any region to which Green's Theorem can be applied
- Then, orienting ∂D appropriately, we have

$$\frac{1}{2}\oint_{\partial D} - y \, dx + x \, dy = \frac{1}{2}\int \int_{D} 2 \, dx dy = \text{Area of } D$$

• Thus, we can calculate the area of a region (two-dimensional) by using line integrals (one-dimensional)

Example 3

• We compute the area inside the ellipse

• The ellipse itself may be parametrized counterclockwise by

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, 0 \le t \le 2\pi$$

Scalar and Vector Line Integrals

Green's Theorem

Examples

Example 3

• We compute the area inside the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad \begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, 0 \le t \le 2\pi$$

Then

Area of ellipse =
$$\frac{1}{2} \oint_{\partial D} - y \, dx + x \, dy$$

= $\frac{1}{2} \int_0^{2\pi} -b \sin t (-a \sin t \, dt) + a \cos t (b \cos t \, dt)$
= $\frac{1}{2} \int_0^{2\pi} (ab \sin^2 t + ab \cos^2 t) \, dt = \frac{1}{2} \int_0^{2\pi} ab \, dt = \pi ab$